
## **Zhigang Zang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962491/publications.pdf Version: 2024-02-01



**ZHICANC ZANC** 

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu_2O/rGO) nanocomposites. Optics Letters, 2017, 42, 911.                                   | 1.7 | 551       |
| 2  | Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random<br>lasing. Nano Energy, 2017, 40, 195-202.                                                                | 8.2 | 419       |
| 3  | Synthesis of MoS_2/g-C_3N_4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Optics Express, 2016, 24, 10205.                                     | 1.7 | 415       |
| 4  | Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Solar Energy Materials and Solar Cells, 2017, 172, 341-346.                           | 3.0 | 408       |
| 5  | Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application.<br>Optics Express, 2013, 21, 11448.                                                                    | 1.7 | 393       |
| 6  | Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging. Sensors and Actuators B: Chemical, 2017, 252, 1179-1186.                  | 4.0 | 391       |
| 7  | Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chemical Communications, 2016, 52, 6296-6299.                                                | 2.2 | 383       |
| 8  | Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. Optics Letters, 2016, 41, 3463.                                              | 1.7 | 343       |
| 9  | Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O<br>films. Applied Physics Letters, 2018, 112, .                                                         | 1.5 | 305       |
| 10 | Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite<br>as an electron transport layer. Journal of Materials Chemistry A, 2017, 5, 17499-17505.               | 5.2 | 293       |
| 11 | Enhanced X-ray photon response in solution-synthesized CsPbBr3 nanoparticles wrapped by reduced graphene oxide. Solar Energy Materials and Solar Cells, 2018, 187, 249-254.                               | 3.0 | 265       |
| 12 | Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. Journal of Materials Chemistry A, 2019, 7, 26421-26428. | 5.2 | 262       |
| 13 | Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. Journal of Alloys and Compounds, 2017, 718, 112-115.                                  | 2.8 | 249       |
| 14 | Ultrastable CsPbBr <sub>3</sub> Perovskite Quantum Dot and Their Enhanced Amplified Spontaneous<br>Emission by Surface Ligand Modification. Small, 2019, 15, e1901173.                                    | 5.2 | 229       |
| 15 | Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method. Journal of Alloys and Compounds, 2015, 619, 98-101.                                              | 2.8 | 221       |
| 16 | Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. Journal of Catalysis, 2018, 357, 100-107.                        | 3.1 | 214       |
| 17 | Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3<br>as electron-transport-layer. Nano Energy, 2019, 57, 718-727.                                      | 8.2 | 211       |
| 18 | Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable<br>red emission of Ag–In–Zn–S for High-CRI white light-emitting diodes. Nano Energy, 2020, 67, 104279.   | 8.2 | 197       |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX <sub>3</sub> /ZnS Quantum<br>Dot Heterostructure. Small, 2017, 13, 1604085.                                                                        | 5.2  | 195       |
| 20 | NH <sub>4</sub> Clâ€Modified ZnO for Highâ€Performance CsPbIBr <sub>2</sub> Perovskite Solar Cells via<br>Lowâ€Temperature Process. Solar Rrl, 2020, 4, 1900363.                                                        | 3.1  | 186       |
| 21 | Flexible All-Inorganic Perovskite CsPbBr <sub>3</sub> Nonvolatile Memory Device. ACS Applied<br>Materials & Interfaces, 2017, 9, 6171-6176.                                                                             | 4.0  | 179       |
| 22 | Performance improvement of perovskite solar cells through enhanced hole extraction: The role of iodide concentration gradient. Solar Energy Materials and Solar Cells, 2018, 185, 117-123.                              | 3.0  | 176       |
| 23 | Interfacial Defect Passivation and Stress Release via Multi-Active-Site Ligand Anchoring Enables<br>Efficient and Stable Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters, 2021, 6,<br>2526-2538.         | 8.8  | 170       |
| 24 | Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature.<br>Materials Letters, 2013, 92, 188-191.                                                                                    | 1.3  | 169       |
| 25 | Efficient charge carrier separation and excellent visible light photoresponse in Cu2O nanowires.<br>Nano Energy, 2018, 50, 118-125.                                                                                     | 8.2  | 166       |
| 26 | Analysis of optical switching in a Yb <sup>3+</sup> -doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Applied Optics, 2012, 51, 3424.                                               | 0.9  | 163       |
| 27 | PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 16583-16589.                                                                    | 5.2  | 162       |
| 28 | Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar<br>perovskite solar cells with enhanced efficiency and stability. Chemical Engineering Journal, 2021, 418,<br>129375. | 6.6  | 157       |
| 29 | Highly pure green light emission of perovskite CsPbBr_3 quantum dots and their application for green light-emitting diodes. Optics Express, 2016, 24, 15071.                                                            | 1.7  | 154       |
| 30 | Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual<br>Effect of NaCl-Doped PEDOT:PSS. ACS Applied Materials & Interfaces, 2017, 9, 43902-43909.                       | 4.0  | 149       |
| 31 | Multifunctional organic ammonium salt-modified SnO <sub>2</sub> nanoparticles toward efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 3940-3951.                          | 5.2  | 146       |
| 32 | High-Power (\$> 110\$ mW) Superluminescent Diodes by Using Active Multimode Interferometer. IEEE<br>Photonics Technology Letters, 2010, 22, 721-723.                                                                    | 1.3  | 143       |
| 33 | Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer. Applied Physics Letters, 2012, 100, .                                                                     | 1.5  | 139       |
| 34 | Room Temperature Synthesis of Stable Zirconiaâ€Coated CsPbBr <sub>3</sub> Nanocrystals for White<br>Lightâ€Emitting Diodes and Visible Light Communication. Laser and Photonics Reviews, 2021, 15, 2100278.             | 4.4  | 138       |
| 35 | Perovskite CsPb <sub>2</sub> Br <sub>5</sub> Microplate Laser with Enhanced Stability and Tunable<br>Properties. Advanced Optical Materials, 2017, 5, 1600788.                                                          | 3.6  | 135       |
| 36 | Three dimensional Z-scheme (BiO) 2 CO 3 /MoS 2 with enhanced visible light photocatalytic NO removal. Applied Catalysis B: Environmental, 2016, 199, 87-95.                                                             | 10.8 | 133       |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Conductivity Enhancement of PEDOT:PSS via Addition of Chloroplatinic Acid and Its Mechanism.<br>Advanced Electronic Materials, 2017, 3, 1700047.                                                                            | 2.6  | 126       |
| 38 | Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair. Journal of Modern Optics, 2012, 59, 161-165.                                       | 0.6  | 125       |
| 39 | All-inorganic perovskite CsPb(Br/I) <sub>3</sub> nanorods for optoelectronic application. Nanoscale, 2016, 8, 15158-15161.                                                                                                  | 2.8  | 123       |
| 40 | Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber. Journal of Applied Physics, 2011, 109, .                                                    | 1.1  | 120       |
| 41 | Enhanced Twoâ€Photonâ€Pumped Emission from In Situ Synthesized Nonblinking<br>CsPbBr <sub>3</sub> /SiO <sub>2</sub> Nanocrystals with Excellent Stability. Advanced Optical<br>Materials, 2018, 6, 1700997.                 | 3.6  | 116       |
| 42 | Strong yellow emission of ZnO hollow nanospheres fabricated using polystyrene spheres as templates. Materials and Design, 2015, 84, 418-421.                                                                                | 3.3  | 115       |
| 43 | Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum<br>dots. Nano Energy, 2016, 28, 462-468.                                                                                  | 8.2  | 115       |
| 44 | Stable Dynamics Performance and High Efficiency of ABX <sub>3</sub> â€Type Superâ€Alkali Perovskites<br>First Obtained by Introducing H <sub>5</sub> O <sub>2</sub> Cation. Advanced Energy Materials, 2019,<br>9, 1900664. | 10.2 | 113       |
| 45 | All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating. Applied Optics, 2013, 52, 5701.                                                                                    | 0.9  | 107       |
| 46 | Simultaneous passivation of bulk and interface defects through synergistic effect of anion and<br>cation toward efficient and stable planar perovskite solar cells. Journal of Energy Chemistry, 2021, 63,<br>452-460.      | 7.1  | 105       |
| 47 | High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Applied Physics Letters, 2020, 116, .                                                              | 1.5  | 102       |
| 48 | Enhancement of Conductivity and Thermoelectric Property of PEDOT:PSS via Acid Doping and Single<br>Postâ€Treatment for Flexible Power Generator. Advanced Sustainable Systems, 2018, 2, 1800085.                            | 2.7  | 101       |
| 49 | Challenges and strategies relating to device function layers and their integration toward high-performance inorganic perovskite solar cells. Nanoscale, 2020, 12, 14369-14404.                                              | 2.8  | 99        |
| 50 | Interface Modulator of Ultrathin Magnesium Oxide for Lowâ€Temperatureâ€Processed Inorganic<br>CsPbIBr <sub>2</sub> Perovskite Solar Cells with Efficiency Over 11%. Solar Rrl, 2020, 4, 2000226.                            | 3.1  | 98        |
| 51 | Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chemical Engineering Journal, 2020, 394, 124903.                            | 6.6  | 97        |
| 52 | Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chemical Engineering Journal, 2021, 419, 129551.                              | 6.6  | 96        |
| 53 | Ultrathin, Core–Shell Structured SiO <sub>2</sub> Coated Mn <sup>2+</sup> â€Doped Perovskite<br>Quantum Dots for Bright White Lightâ€Emitting Diodes. Small, 2019, 15, e1900484.                                            | 5.2  | 95        |
| 54 | Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified<br>CsPbBr <sub>3</sub> quantum dots. Opto-Electronic Advances, 2022, 5, 200075-200075.                                         | 6.4  | 92        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Highly Stable Silica-Wrapped Mn-Doped CsPbCl <sub>3</sub> Quantum Dots for Bright White<br>Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 43978-43986.                                                                           | 4.0 | 91        |
| 56 | Two-dimensional lead-free hybrid halide perovskite using superatom anions with tunable electronic properties. Solar Energy Materials and Solar Cells, 2019, 191, 33-38.                                                                                 | 3.0 | 90        |
| 57 | Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Solar Energy, 2020, 206, 816-825.                                                                          | 2.9 | 86        |
| 58 | Hollow Cu2O nanospheres loaded with MoS2/reduced graphene oxide nanosheets for ppb-level NO2 detection at room temperature. Journal of Hazardous Materials, 2021, 416, 126218.                                                                          | 6.5 | 83        |
| 59 | Revealing Stericâ€Hindranceâ€Dependent Buried Interface Defect Passivation Mechanism in Efficient and<br>Stable Perovskite Solar Cells with Mitigated Tensile Stress. Advanced Functional Materials, 2022, 32, .                                        | 7.8 | 83        |
| 60 | Stabilizing Perovskite Precursor by Synergy of Functional Groups for NiO <sub><i>x</i></sub> â€Based<br>Inverted Solar Cells with 23.5 % Efficiency. Angewandte Chemie - International Edition, 2022, 61, .                                             | 7.2 | 82        |
| 61 | Tunable luminescent CsPb_2Br_5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photonics Research, 2017, 5, 473.                                                                                                               | 3.4 | 79        |
| 62 | High Power and Stable High Coupling Efficiency (66%) Superluminescent Light Emitting Diodes by<br>Using Active Multi-Mode Interferometer. IEICE Transactions on Electronics, 2011, E94-C, 862-864.                                                      | 0.3 | 77        |
| 63 | MXene Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> -Derived Nitrogen-Functionalized<br>Heterophase TiO <sub>2</sub> Homojunctions for Room-Temperature Trace Ammonia Gas Sensing. ACS<br>Applied Materials & Interfaces, 2021, 13, 56485-56497. | 4.0 | 77        |
| 64 | Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133209.                                                                               | 6.6 | 74        |
| 65 | Efficiently Luminescent and Stable Leadâ€free Cs <sub>3</sub> Cu <sub>2</sub> Cl <sub>5</sub> @Silica<br>Nanocrystals for White Lightâ€Emitting Diodes and Communication. Advanced Optical Materials, 2021, 9,<br>2100307.                              | 3.6 | 73        |
| 66 | Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber. Optics Communications, 2012, 285, 521-526.                                                                                    | 1.0 | 72        |
| 67 | Flower-like nickel-zinc-cobalt mixed metal oxide nanowire arrays for electrochemical capacitor applications. Journal of Alloys and Compounds, 2017, 708, 146-153.                                                                                       | 2.8 | 72        |
| 68 | Conductometric room temperature ammonia sensors based on titanium dioxide nanoparticles<br>decorated thin black phosphorus nanosheets. Sensors and Actuators B: Chemical, 2021, 349, 130770.                                                            | 4.0 | 72        |
| 69 | Low-operating temperature ammonia sensor based on Cu <sub>2</sub> O nanoparticles decorated with p-type MoS <sub>2</sub> nanosheets. Journal of Materials Chemistry C, 2021, 9, 4838-4846.                                                              | 2.7 | 72        |
| 70 | Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum<br>dots@SiO2 sphere. Chemical Engineering Journal, 2020, 401, 126066.                                                                                  | 6.6 | 67        |
| 71 | Robust Cesium Lead Halide Perovskite Microcubes for Frequency Upconversion Lasing. Advanced Optical Materials, 2017, 5, 1700419.                                                                                                                        | 3.6 | 64        |
| 72 | Small Molecule Modulator at the Interface for Efficient Perovskite Solar Cells with High<br>Shortâ€Circuit Current Density and Hysteresis Free. Advanced Electronic Materials, 2020, 6, 2000604.                                                        | 2.6 | 62        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | CsPbBr3/Reduced Graphene Oxide nanocomposites and their enhanced photoelectric detection application. Sensors and Actuators B: Chemical, 2017, 245, 435-440.                                                       | 4.0 | 61        |
| 74 | Room-temperature doping of ytterbium into efficient near-infrared emission<br>CsPbBr <sub>1.5</sub> Cl <sub>1.5</sub> perovskite quantum dots. Chemical Communications, 2020, 56,<br>5811-5814.                    | 2.2 | 61        |
| 75 | Two-step method for preparing all-inorganic CsPbBr3 perovskite film and its photoelectric detection application. Materials Letters, 2017, 186, 243-246.                                                            | 1.3 | 60        |
| 76 | Transient Resistive Switching Memory of CsPbBr <sub>3</sub> Thin Films. Advanced Electronic Materials, 2018, 4, 1700596.                                                                                           | 2.6 | 60        |
| 77 | Allâ€Inorganic Leadâ€Free Perovskite(â€Like) Single Crystals: Synthesis, Properties, and Applications. Small<br>Methods, 2021, 5, e2001308.                                                                        | 4.6 | 60        |
| 78 | Template Assembled Large‧ize CsPbBr <sub>3</sub> Nanocomposite Films toward Flexible, Stable, and<br>Highâ€Performance Xâ€Ray Scintillators. Laser and Photonics Reviews, 2022, 16, .                              | 4.4 | 59        |
| 79 | The Role of Mineral Acid Doping of PEDOT:PSS and Its Application in Organic Photovoltaics. Advanced Electronic Materials, 2020, 6, 1900648.                                                                        | 2.6 | 56        |
| 80 | Human hair keratin for physically transient resistive switching memory devices. Journal of Materials<br>Chemistry C, 2019, 7, 3315-3321.                                                                           | 2.7 | 55        |
| 81 | Synthesis mechanism and optical properties of well nanoflower-shaped ZnO fabricated by a facile method. Optical Materials Express, 2014, 4, 1762.                                                                  | 1.6 | 53        |
| 82 | Room temperature synthesis of stable silica-coated CsPbBr <sub>3</sub> quantum dots for amplified spontaneous emission. Photonics Research, 2020, 8, 1605.                                                         | 3.4 | 53        |
| 83 | Sodium Benzenesulfonate Modified Poly (3,4â€Ethylenedioxythiophene):Polystyrene Sulfonate with<br>Improved Wettability and Work Function for Efficient and Stable Perovskite Solar Cells. Solar Rrl,<br>2021, 5, . | 3.1 | 51        |
| 84 | Ultrapure and highly efficient green light emitting devices based on ligand-modified<br>CsPbBr <sub>3</sub> quantum dots. Photonics Research, 2020, 8, 1086.                                                       | 3.4 | 51        |
| 85 | Luminescent AIZS-GO nanocomposites as fluorescent probe for detecting copper(II) ion. Sensors and Actuators B: Chemical, 2016, 233, 25-30.                                                                         | 4.0 | 49        |
| 86 | Eco-friendly and high-performance photoelectrochemical anode based on AgInS <sub>2</sub><br>quantum dots embedded in 3D graphene nanowalls. Journal of Materials Chemistry C, 2019, 7,<br>9830-9839.               | 2.7 | 48        |
| 87 | Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells. Nano<br>Research, 2022, 15, 5114-5122.                                                                               | 5.8 | 47        |
| 88 | Surfaceâ€Passivated Cesium Lead Halide Perovskite Quantum Dots: Toward Efficient Lightâ€Emitting<br>Diodes with an Inverted Sandwich Structure. Advanced Optical Materials, 2018, 6, 1800007.                      | 3.6 | 44        |
| 89 | Inorganic lead-free cesium copper chlorine nanocrystal for highly efficient and stable warm white<br>light-emitting diodes. Photonics Research, 2021, 9, 187.                                                      | 3.4 | 44        |
| 90 | Tunable electronic structures and high efficiency obtained by introducing superalkali and superhalogen into AMX3-type perovskites. Journal of Power Sources, 2019, 429, 120-126.                                   | 4.0 | 43        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application.<br>Journal of Solid State Chemistry, 2017, 255, 115-120.                                                                                            | 1.4 | 42        |
| 92  | Room temperature synthesis of Sn <sup>2+</sup> doped highly luminescent<br>CsPbBr <sub>3</sub> quantum dots for high CRI white light-emitting diodes. Nanoscale, 2021, 13,<br>9740-9746.                                                                | 2.8 | 42        |
| 93  | Methylammonium chloride as an interface modificator for planar-structure perovskite solar cells with a high open circuit voltage of 1.19V. Journal of Power Sources, 2020, 480, 229073.                                                                 | 4.0 | 41        |
| 94  | Highly Efficient and Ultraâ€Broadband Yellow Emission of Leadâ€Free Antimony Halide toward White<br>Lightâ€Emitting Diodes and Visible Light Communication. Laser and Photonics Reviews, 2022, 16, .                                                    | 4.4 | 36        |
| 95  | One-Volt, Solution-Processed InZnO Thin-Film Transistors. IEEE Electron Device Letters, 2021, 42, 525-528.                                                                                                                                              | 2.2 | 35        |
| 96  | Opportunities and challenges of inorganic perovskites in high-performance photodetectors. Journal<br>Physics D: Applied Physics, 2021, 54, 293002.                                                                                                      | 1.3 | 35        |
| 97  | Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells:<br>Experimental and theoretical evidence. EcoMat, 2022, 4, .                                                                                    | 6.8 | 35        |
| 98  | I-III-VI chalcogenide semiconductor nanocrystals: Synthesis, properties, and applications. Chinese<br>Journal of Catalysis, 2018, 39, 590-605.                                                                                                          | 6.9 | 33        |
| 99  | High-Efficiency and Stable Inverted Planar Perovskite Solar Cells with Pulsed Laser Deposited<br>Cu-Doped NiO <sub><i>x</i></sub> Hole-Transport Layers. ACS Applied Materials & Interfaces, 2020,<br>12, 50684-50691.                                  | 4.0 | 33        |
| 100 | Dual Resistance and Impedance Investigation: Ultrasensitive and Stable Humidity Detection of<br>Molybdenum Disulfide Nanosheet-Polyethylene Oxide Hybrids. ACS Applied Materials & Interfaces,<br>2021, 13, 25250-25259.                                | 4.0 | 33        |
| 101 | Eliminating J-V hysteresis in perovskite solar cells via defect controlling. Organic Electronics, 2018, 58, 283-289.                                                                                                                                    | 1.4 | 29        |
| 102 | Enhanced single-mode lasers of all-inorganic perovskite nanocube by localized surface plasmonic effect from Au nanoparticles. Journal of Luminescence, 2019, 208, 402-407.                                                                              | 1.5 | 28        |
| 103 | Pressureâ€assisted cooling to grow ultraâ€stable<br><scp>Cs<sub>3</sub>Cu<sub>2</sub>l<sub>5</sub></scp> and<br><scp>CsCu<sub>2</sub>l<sub>3</sub></scp> single crystals for solidâ€state lighting and visible light<br>communication. EcoMat. 2022. 4. | 6.8 | 28        |
| 104 | Fabrication of high quality and low cost microlenses on a glass substrate by direct printing technique. Applied Optics, 2014, 53, 7868.                                                                                                                 | 2.1 | 27        |
| 105 | All-Inorganic Perovskite CsPb2Br5 Microsheets for Photodetector Application. Frontiers in Physics, 2018, 5, .                                                                                                                                           | 1.0 | 26        |
| 106 | Inorganic halide perovskites for lighting and visible light communication. Photonics Research, 2022, 10, 1039.                                                                                                                                          | 3.4 | 26        |
| 107 | Simultaneous Passivation of Bulk and Interface Defects with Gradient 2D/3D Heterojunction<br>Engineering for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces,<br>2022, 14, 21079-21088.                                 | 4.0 | 26        |
| 108 | Inhibition of Inâ€Plane Charge Transport in Hole Transfer Layer to Achieve High Fill Factor for Inverted<br>Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900104.                                                                                 | 3.1 | 25        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Crystal Orientation Modulation and Defect Passivation for Efficient and Stable Methylammonium-Free<br>Dion-Jacobson Quasi-2D Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13,<br>29567-29575.                | 4.0 | 24        |
| 110 | Nanocomposites of AgInZnS and graphene nanosheets as efficient photocatalysts for hydrogen evolution. Nanoscale, 2015, 7, 18498-18503.                                                                                            | 2.8 | 23        |
| 111 | Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber. Scientific Reports, 2015, 5, 7710.                                                       | 1.6 | 21        |
| 112 | Intrinsic white-light emission from low-dimensional perovskites for white-light-emitting diodes with high-color-rendering index. Cell Reports Physical Science, 2021, 2, 100585.                                                  | 2.8 | 21        |
| 113 | Optoelectronic Modulation of Undoped NiO <sub><i>x</i></sub> Films for Inverted Perovskite Solar<br>Cells via Intrinsic Defect Regulation. ACS Applied Energy Materials, 2020, 3, 9732-9741.                                      | 2.5 | 20        |
| 114 | lon migration suppression mechanism via 4-sulfobenzoic acid monopotassium salt for 22.7% stable perovskite solar cells. Science China Materials, 2022, 65, 3368-3381.                                                             | 3.5 | 19        |
| 115 | Interdigitated CuS/TiO2 Nanotube Bulk Heterojunctions Achieved via Ion Exchange. Electrochimica Acta, 2016, 199, 180-186.                                                                                                         | 2.6 | 17        |
| 116 | All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable<br>filter. Optics Express, 2014, 22, 5950.                                                                                | 1.7 | 16        |
| 117 | Synthesis of Mn doping Ag–In–Zn–S nanoparticles and their photoluminescence properties. Materials and Design, 2016, 91, 256-261.                                                                                                  | 3.3 | 16        |
| 118 | Synthesis of CulnZnS quantum dots for cell labelling applications. Ceramics International, 2018, 44, S34-S37.                                                                                                                     | 2.3 | 16        |
| 119 | Tunable dual emission in Mn <sup>2+</sup> -doped CsPbX <sub>3</sub> (X = Cl, Br) quantum dots for high efficiency white light-emitting diodes. Nanotechnology, 2019, 30, 075704.                                                  | 1.3 | 16        |
| 120 | Interfacial gradient energy band alignment modulation via ion exchange reaction toward efficient<br>and stable methylammonium-free Dion-Jacobson quasi-2D perovskite solar cells. Journal of Power<br>Sources, 2021, 506, 230213. | 4.0 | 16        |
| 121 | Double‣ide Interface Engineering Synergistically Boosts the Efficiency of Inorganic<br>CsPblBr <sub>2</sub> Perovskite Solar Cells Over 12%. Advanced Optical Materials, 2022, 10, .                                              | 3.6 | 16        |
| 122 | A facile method for the synthesis of quaternary Ag–In–Zn–S alloyed nanorods. Nanoscale, 2014, 6,<br>11803-11809.                                                                                                                  | 2.8 | 13        |
| 123 | A facile method for synthesizing AgInZnS/RGO nanocomposites and their photoelectric detection application. Materials Letters, 2016, 182, 240-243.                                                                                 | 1.3 | 13        |
| 124 | Enhanced p-Type Conductivity of NiO <sub><i>x</i></sub> Films with Divalent Cd Ion Doping for<br>Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 17434-17443.                            | 4.0 | 13        |
| 125 | Selfâ€Formed Multifunctional Grain Boundary Passivation Layer Achieving 22.4% Efficient and Stable<br>Perovskite Solar Cells. Solar Rrl, 2022, 6, .                                                                               | 3.1 | 13        |
| 126 | Deciphering Ultrafast Carrier Dynamics of Eco-Friendly ZnSeTe-Based Quantum Dots: Toward<br>High-Quality Blue–Green Emitters. Journal of Physical Chemistry Letters, 2021, 12, 11931-11938.                                       | 2.1 | 13        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | High-Performance Photodetectors With X-Ray Responsivity Based on Interface Modified Perovskite<br>Film. IEEE Electron Device Letters, 2020, 41, 1044-1047.                                         | 2.2 | 12        |
| 128 | Facile synthesis and photoluminescence characterization of AgInZnS hollow nanoparticles. Materials<br>Letters, 2015, 151, 89-92.                                                                   | 1.3 | 11        |
| 129 | Interface modification by ethanolamine interfacial layer for efficient planar structure perovskite<br>solar cells. Journal of Power Sources, 2021, 513, 230549.                                    | 4.0 | 11        |
| 130 | Performance enhancement of solution-processed InZnO thin-film transistors by Al doping and surface passivation. Journal of Semiconductors, 2022, 43, 034102.                                       | 2.0 | 11        |
| 131 | Stable yellow light emission from lead-free copper halides single crystals for visible light communication. Nano Materials Science, 2023, 5, 78-85.                                                | 3.9 | 11        |
| 132 | Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified<br>CsPbBr <sub>3</sub> quantum dots. Opto-Electronic Advances, 2021, .                                | 6.4 | 10        |
| 133 | Fabrication and integration of quasi-one-dimensional hierarchical TiO <sub>2</sub> nanotubes for dye-sensitized solar cells. CrystEngComm, 2015, 17, 8327-8331.                                    | 1.3 | 9         |
| 134 | Resistive switching characteristics of AgInZnS nanoparticles. Ceramics International, 2018, 44, S152-S155.                                                                                         | 2.3 | 9         |
| 135 | Transient multiexponential signals analysis using Bayesian deconvolution. Applied Mathematics and Computation, 2015, 265, 486-493.                                                                 | 1.4 | 8         |
| 136 | Improving Humidity Sensing of Black Phosphorus Nanosheets by Co-Doping Benzyl Viologen and Au<br>Nanoparticles. Journal of the Electrochemical Society, 2022, 169, 017513.                         | 1.3 | 8         |
| 137 | Excited-state regulation in eco-friendly ZnSeTe-based quantum dots by cooling engineering. Science<br>China Materials, 2022, 65, 1569-1576.                                                        | 3.5 | 8         |
| 138 | Opportunities and challenges of low-dimensional hybrid metal halides in white light-emitting diodes.<br>Journal Physics D: Applied Physics, 2022, 55, 333003.                                      | 1.3 | 8         |
| 139 | Synthesis of Ag-In-Zn-S alloyed nanorods and their biological application. Nanotechnology, 2014, 25, 485702.                                                                                       | 1.3 | 6         |
| 140 | Heat effects of amorphous FeCuNbSiB alloy ablated with femtosecond laser. Thin Solid Films, 2008, 516, 2260-2263.                                                                                  | 0.8 | 5         |
| 141 | Stabilizing Perovskite Precursor by Synergy of Functional Groups for NiOxâ€Based Inverted Solar Cells<br>with 23.5% Efficiency. Angewandte Chemie, 0, , .                                          | 1.6 | 3         |
| 142 | Swift-heavy ion implanted Nd:YVO4 waveguides with birefringence preservation and Raman gain enhancement. Optik, 2017, 140, 579-583.                                                                | 1.4 | 2         |
| 143 | Perovskite Quantum Dots: Ultrathin, Core–Shell Structured SiO 2 Coated Mn 2+ â€Doped Perovskite<br>Quantum Dots for Bright White Lightâ€Emitting Diodes (Small 19/2019). Small, 2019, 15, 1970101. | 5.2 | 2         |
| 144 | All-Inorganic Perovskite Quantum Dots: Ligand Modification, Surface Treatment and Other Strategies<br>for Enhanced Stability and Durability. Springer Series in Materials Science, 2020, , 51-106. | 0.4 | 2         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application: notice of redundant publication. Optics Express, 2019, 27, 30449.                                               | 1.7 | 2         |
| 146 | The optical performance of all-optical switching based on fiber Bragg grating. , 2011, , .                                                                                                                         |     | 1         |
| 147 | High sensitivity side-polished multimode fiber based refractometer. Proceedings of SPIE, 2014, , .                                                                                                                 | 0.8 | 1         |
| 148 | Twoâ€Photon Lasers: Perovskite CsPb <sub>2</sub> Br <sub>5</sub> Microplate Laser with Enhanced<br>Stability and Tunable Properties (Advanced Optical Materials 3/2017). Advanced Optical Materials, 2017,<br>5, . | 3.6 | 1         |
| 149 | The optical performance of all-optical switching based on fiber Bragg grating. , 2010, , .                                                                                                                         |     | Ο         |
| 150 | A novel low-switching power (45 mW) optical bistability devise using fiber Bragg grating pair separated by a ytterbium-doped fiber. , 2010, , .                                                                    |     | 0         |
| 151 | Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application: publisher's note. Optics Express, 2019, 27, 33143.                                                              | 1.7 | Ο         |