Satoshi Kawata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962218/publications.pdf

Version: 2024-02-01

14655 10445 20,190 230 66 citations h-index papers

g-index 233 233 233 14520 docs citations times ranked citing authors all docs

139

#	Article	IF	CITATIONS
1	Finer features for functional microdevices. Nature, 2001, 412, 697-698.	27.8	2,656
2	Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters, 1997, 22, 132.	3.3	1,735
3	Three-Dimensional Optical Data Storage Using Photochromic Materials. Chemical Reviews, 2000, 100, 1777-1788.	47.7	1,355
4	Plasmonics for near-field nano-imaging and superlensing. Nature Photonics, 2009, 3, 388-394.	31.4	705
5	Metallized tip amplification of near-field Raman scattering. Optics Communications, 2000, 183, 333-336.	2.1	634
6	Near-field scanning optical microscope with a metallic probe tip. Optics Letters, 1994, 19, 159.	3.3	578
7	Label-free Raman observation of cytochrome c dynamics during apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 28-32.	7.1	399
8	Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging. Physical Review Letters, 2004, 92, 220801.	7.8	380
9	Alkyne-Tag Raman Imaging for Visualization of Mobile Small Molecules in Live Cells. Journal of the American Chemical Society, 2012, 134, 20681-20689.	13.7	370
10	Raman and SERS microscopy for molecular imaging of live cells. Nature Protocols, 2013, 8, 677-692.	12.0	304
11	Two-Photon Photopolymerization and 3D Lithographic Microfabrication. Advances in Polymer Science, 2006, , 169-273.	0.8	261
12	Raman microscopy for dynamic molecular imaging of living cells. Journal of Biomedical Optics, 2008, 13, 1.	2.6	258
13	Near-field Raman scattering enhanced by a metallized tip. Chemical Physics Letters, 2001, 335, 369-374.	2.6	252
14	Multiple-spot parallel processing for laser micronanofabrication. Applied Physics Letters, 2005, 86, 044102.	3.3	245
15	Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Applied Physics Letters, 2004, 85, 6239-6241.	3.3	244
16	A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nature Communications, 2014, 5, 3312.	12.8	238
17	Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Applied Physics Letters, 2000, 76, 2668-2670.	3.3	222
18	Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration. Optics Letters, 2000, 25, 1768.	3.3	218

#	Article	IF	Citations
19	Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Applied Physics Letters, 2006, 88, 081107.	3.3	216
20	Dynamic SERS Imaging of Cellular Transport Pathways with Endocytosed Gold Nanoparticles. Nano Letters, 2011, 11, 5344-5348.	9.1	216
21	Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters, 2003, 376, 174-180.	2.6	213
22	3D Metallic Nanostructure Fabrication by Surfactantâ€Assisted Multiphotonâ€Induced Reduction. Small, 2009, 5, 1144-1148.	10.0	212
23	Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system. Applied Physics Letters, 2002, 80, 312-314.	3.3	206
24	Subwavelength colour imaging with a metallic nanolens. Nature Photonics, 2008, 2, 438-442.	31.4	206
25	Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Applied Physics Letters, 2007, 90, 131106.	3.3	194
26	Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Applied Physics Letters, 2005, 86, 071122.	3.3	192
27	Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nature Photonics, 2009, 3, 473-477.	31.4	192
28	Tip-enhanced Raman spectroscopy – from early developments to recent advances. Chemical Society Reviews, 2017, 46, 4077-4110.	38.1	185
29	Scaling laws of voxels in two-photon photopolymerization nanofabrication. Applied Physics Letters, 2003, 83, 1104-1106.	3.3	178
30	Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope. Journal of Chemical Physics, 2002, 117, 1296-1301.	3.0	177
31	Deepâ€UV tipâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2009, 40, 1324-1330.	2.5	165
32	Three-dimensional focal spots related to two-photon excitation. Applied Physics Letters, 2002, 80, 3673-3675.	3.3	163
33	Local field enhancement with an apertureless near-field-microscope probe. Optics Communications, 1998, 148, 221-224.	2.1	135
34	Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Applied Physics Letters, 2012, 101, 081110.	3.3	133
35	Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Physical Review B, 2004, 69,	3.2	128
36	Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix. Applied Physics Letters, 2003, 83, 1426-1428.	3.3	124

3

#	Article	IF	Citations
37	Elastic force analysis of functional polymer submicron oscillators. Applied Physics Letters, 2001, 79, 3173-3175.	3.3	122
38	Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nature Communications, 2013, 4, 2592.	12.8	117
39	Gold-bead scanning near-field optical microscope with laser-force position control. Optics Letters, 1997, 22, 1663.	3.3	115
40	Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Applied Physics Letters, 2001, 79, 1411-1413.	3.3	105
41	Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Applied Physics Letters, 2006, 89, 113102.	3.3	103
42	Subnanometric Near-Field Raman Investigation in the Vicinity of a Metallic Nanostructure. Physical Review Letters, 2009, 102, 186101.	7.8	103
43	Towards plasmonic band gap laser. Applied Physics Letters, 2004, 85, 3968-3970.	3.3	102
44	Nanoscale Uniaxial Pressure Effect of a Carbon Nanotube Bundle on Tip-Enhanced Near-Field Raman Spectra. Nano Letters, 2006, 6, 1269-1273.	9.1	99
45	Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Applied Physics Letters, 2006, 88, 083110.	3.3	98
46	Nanoâ€scale analysis of graphene layers by tipâ€enhanced nearâ€field Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 1434-1440.	2.5	95
47	Structured line illumination Raman microscopy. Nature Communications, 2015, 6, 10095.	12.8	90
48	Near-field enhanced Raman spectroscopy using side illumination optics. Journal of Applied Physics, 2002, 92, 6983-6986.	2.5	89
49	Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization. Applied Physics Letters, 2003, 83, 819-821.	3.3	87
50	Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication. Applied Physics Letters, 2003, 83, 2091-2093.	3.3	87
51	Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope. Physical Review Letters, 2014, 112, 017402.	7.8	87
52	Laser nanofabrication in photoresists and azopolymers. Laser and Photonics Reviews, 2014, 8, 1-26.	8.7	87
53	Shape precompensation in two-photon laser nanowriting of photonic lattices. Applied Physics Letters, 2004, 85, 3708-3710.	3.3	85
54	Visualizing Cell State Transition Using Raman Spectroscopy. PLoS ONE, 2014, 9, e84478.	2.5	85

#	Article	IF	Citations
55	Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication. Thin Solid Films, 2004, 453-454, 518-521.	1.8	82
56	Near-Field Scanning Optical Microscope with a Laser Trapped Probe. Japanese Journal of Applied Physics, 1994, 33, L1725-L1727.	1.5	80
57	Nano-Raman Scattering Microscopy: Resolution and Enhancement. Chemical Reviews, 2017, 117, 4983-5001.	47.7	80
58	3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography. Carbon, 2013, 59, 283-288.	10.3	79
59	Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale, 2015, 7, 17424-17433.	5.6	79
60	Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy. Journal of Raman Spectroscopy, 2007, 38, 684-696.	2.5	78
61	Plasmon-enhanced UV photocatalysis. Applied Physics Letters, 2014, 104, .	3.3	78
62	Alkyne-Tag SERS Screening and Identification of Small-Molecule-Binding Sites in Protein. Journal of the American Chemical Society, 2016, 138, 13901-13910.	13.7	76
63	Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy. Journal of Chemical Physics, 2006, 125, 244706.	3.0	75
64	Near-field Raman scattering investigation of tip effects on C60 molecules. Physical Review B, 2006, 73, .	3.2	75
65	Plasmonic Enhancement of Raman Scattering on Non-SERS-Active Platinum Substrates. Journal of Physical Chemistry C, 2009, 113, 11816-11821.	3.1	72
66	Indium for Deep-Ultraviolet Surface-Enhanced Resonance Raman Scattering. ACS Photonics, 2014, 1, 598-603.	6.6	67
67	Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference. Applied Physics Letters, 2003, 83, 608-610.	3.3	66
68	<title>Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy</title> ., 1999,,.		65
69	Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films. Applied Physics Letters, 2004, 85, 351-353.	3.3	64
70	Highly reproducible tipâ€enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. Journal of Raman Spectroscopy, 2012, 43, 1177-1182.	2.5	64
71	Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles. Journal of Raman Spectroscopy, 2003, 34, 651-654.	2.5	63
72	Optically-induced growth of fiber patterns into a photopolymerizable resin. Applied Physics Letters, 1999, 75, 737-739.	3.3	62

#	Article	IF	Citations
73	Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film. Physical Review B, 2008, 77, .	3.2	62
74	Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Applied Physics Letters, 2004, 84, 1768-1770.	3.3	61
75	Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers. Journal of Physical Chemistry B, 2002, 106, 12407-12417.	2.6	59
76	Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles. Applied Physics Letters, 2006, 88, 093125.	3.3	58
77	Direct Laser Writing of 3D Architectures of Aligned Carbon Nanotubes. Advanced Materials, 2014, 26, 5653-5657.	21.0	58
78	Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. Optics Express, 2009, 17, 6509.	3.4	57
79	Quantitative Evaluation of Surface-Enhanced Raman Scattering Nanoparticles for Intracellular pH Sensing at a Single Particle Level. Analytical Chemistry, 2019, 91, 3254-3262.	6.5	57
80	Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging. Applied Physics Express, 2015, 8, 032401.	2.4	56
81	Two-photon photopolymerization as a tool for making micro-devices. Applied Surface Science, 2003, 208-209, 153-158.	6.1	54
82	Design of high efficiency for two-photon polymerization initiator: combination of radical stabilization and large two-photon cross-section achieved by N-benzyl 3,6-bis(phenylethynyl)carbazole derivatives. Journal of Materials Chemistry, 2007, 17, 1433.	6.7	53
83	Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging. Optics Express, 2009, 17, 9526.	3.4	52
84	Saturation and Reverse Saturation of Scattering in a Single Plasmonic Nanoparticle. ACS Photonics, 2014, 1, 32-37.	6.6	52
85	SUPER-DYNAMIC-RANGE MEASUREMENT OF FT-IR SPECTRA BY DELTA-SIGMA MODULATION. Analytical Sciences, 1991, 7, 709-710.	1.6	49
86	Deep ultraviolet resonant Raman imaging of a cell. Journal of Biomedical Optics, 2012, 17, 0760011.	2.6	49
87	A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 664-667.	2.2	48
88	Nanoanalysis of crystalline properties of CaN thin film using tip-enhanced Raman spectroscopy. Applied Physics Letters, 2007, 90, 061906.	3.3	46
89	Simultaneous imaging of protonated and deprotonated carbonylcyanide p-trifluoromethoxyphenylhydrazone in live cells by Raman microscopy. Chemical Communications, 2014, 50, 1341-1343.	4.1	45
90	Ultrasmall all-optical plasmonic switch and its application to superresolution imaging. Scientific Reports, 2016, 6, 24293.	3.3	45

#	Article	IF	CITATIONS
91	SELF-WRITTEN WAVEGUIDES IN PHOTOSENSITIVE MATERIALS. Journal of Nonlinear Optical Physics and Materials, 2002, 11, 391-407.	1.8	44
92	Carbazole-based 1D and 2D hemicyanines: synthesis, two-photon absorption properties and application for two-photon photopolymerization 3D lithography. New Journal of Chemistry, 2007, 31, 63-68.	2.8	44
93	Deep UV resonant Raman spectroscopy for photodamage characterization in cells. Biomedical Optics Express, 2011, 2, 927.	2.9	44
94	Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization. Optics Express, 2011, 19, 22786.	3.4	44
95	Plasmonics: Future Outlook. Japanese Journal of Applied Physics, 2013, 52, 010001.	1.5	44
96	Time-lapse Raman imaging of osteoblast differentiation. Scientific Reports, 2015, 5, 12529.	3.3	44
97	Apertureless optical near-field fabrication using an atomic force microscope on photoresists. Applied Physics Letters, 2002, 80, 3400-3402.	3.3	43
98	Two-Photon Excited Fluorescence and Second-Harmonic Generation of the DAST Organic Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 8988-8993.	3.1	40
99	Nanomovement of Azo Polymers Induced by Longitudinal Fields. ACS Photonics, 2014, 1, 190-197.	6.6	39
100	3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways. Methods, 2014, 68, 348-353.	3.8	39
101	Deepâ€Ultraviolet Biomolecular Imaging and Analysis. Advanced Optical Materials, 2019, 7, 1801099.	7.3	39
102	Giant elasticity of photopolymer nanowires. Applied Physics Letters, 2007, 91, .	3.3	38
103	Superhydrophobic SERS Substrates Based on Silver-Coated Reduced Graphene Oxide Gratings Prepared by Two-Beam Laser Interference. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27059-27065.	8.0	38
104	Two-photon isomerization and orientation of photoisomers in thin films of polymer. Optics Communications, 2003, 222, 269-276.	2.1	37
105	Synthesis, optical and initiating properties of new two-photon polymerization initiators: 2,7-Bis(styryl)anthraquinone derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 398-404.	3.9	36
106	Two-photon induced polymer nanomovement. Optics Express, 2008, 16, 14106.	3.4	36
107	Tipâ€enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source. Journal of Raman Spectroscopy, 2012, 43, 656-661.	2.5	36
108	Anomalous lattice vibrations of monolayer MoS ₂ probed by ultraviolet Raman scattering. Physical Chemistry Chemical Physics, 2015, 17, 14561-14568.	2.8	36

#	Article	IF	Citations
109	Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses. Applied Physics Letters, 2001, 78, 999-1001.	3.3	35
110	Far-field free tapping-mode tip-enhanced Raman microscopy. Applied Physics Letters, 2013, 102, .	3.3	35
111	Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon. Review of Scientific Instruments, 2008, 79, 013706.	1.3	34
112	Temperature effects on pinpoint photopolymerization and polymerized micronanostructures. Applied Physics Letters, 2008, 92, 041902.	3.3	34
113	Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication. Applied Physics A: Materials Science and Processing, 2009, 96, 453-458.	2.3	34
114	Crack engineering for the construction of arbitrary hierarchical architectures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23909-23914.	7.1	34
115	Two- and three-dimensional micro/nanostructure patterning of CdS–polymer nanocomposites with a laser interference technique and ⟨i⟩in situ⟨/i⟩synthesis. Nanotechnology, 2008, 19, 035611.	2.6	33
116	Super-Spatial- and -Spectral-Resolution in Vibrational Imaging via Saturated Coherent Anti-Stokes Raman Scattering. Physical Review Applied, 2015, 4, .	3.8	33
117	Molecular orientation analysis of organic thin films by <i>z</i> à€polarization Raman microscope. Journal of Raman Spectroscopy, 2012, 43, 2029-2034.	2.5	30
118	Chirality-Selective Optical Scattering Force on Single-Walled Carbon Nanotubes. Physical Review Applied, 2015, 3, .	3.8	30
119	Deep-UV biological imaging by lanthanide ion molecular protection. Biomedical Optics Express, 2016, 7, 158.	2.9	29
120	Two-photon lasing of dye-doped photonic crystal lasers. Applied Physics Letters, 2004, 84, 1632-1634.	3.3	28
121	Ordering of azobenzenes by two-photon isomerization. Journal of Chemical Physics, 2006, 125, 164718.	3.0	28
122	Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. Carbon, 2015, 81, 807-813.	10.3	28
123	Direct laser writing defects in holographic lithography-created photonic lattices. Optics Letters, 2005, 30, 881.	3.3	27
124	Photo-orientation by multiphoton photoselection. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 868.	2.1	27
125	Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires. Optics Letters, 2009, 34, 566.	3.3	27
126	Rupture force measurement of biotin-streptavidin bonds using optical trapping. Applied Physics Letters, 2005, 87, 043901.	3.3	26

#	Article	IF	CITATIONS
127	Vibrational Analysis of Organic Molecules Encapsulated in Carbon Nanotubes by Tip-Enhanced Raman Spectroscopy. Japanese Journal of Applied Physics, 2006, 45, 9286-9289.	1.5	26
128	Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts. Physical Review B, 2009, 79, .	3.2	24
129	Tunable plasmon resonances in a metallic nanotip–film system. Nanoscale, 2012, 4, 5931.	5.6	23
130	Au-Protected Ag Core/Satellite Nanoassemblies for Excellent Extra-/Intracellular Surface-Enhanced Raman Scattering Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44027-44037.	8.0	23
131	C2v symmetrical two-photon polymerization initiators with anthracene core: synthesis, optical and initiating properties. Physical Chemistry Chemical Physics, 2012, 14, 15785.	2.8	22
132	Size dependent nanomechanics of coil spring shaped polymer nanowires. Scientific Reports, 2015, 5, 17152.	3.3	22
133	Analysis of dynamic SERS spectra measured with a nanoparticle during intracellular transportation in 3D. Journal of Optics (United Kingdom), 2015, 17, 114023.	2.2	22
134	Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging. Journal of Biomedical Optics, 2015, 20, 1.	2.6	21
135	Near-Field Optics and Spectroscopy for Molecular Nano-Imaging. Science Progress, 2004, 87, 25-50.	1.9	20
136	Metal-nanoshelled three-dimensional photonic lattices. Optics Letters, 2008, 33, 1999.	3.3	20
137	Size Dependence of Transition Temperature in Polymer Nanowires. Journal of Physical Chemistry B, 2008, 112, 3586-3589.	2.6	19
138	Visualizing the appearance and disappearance of the attractor of differentiation using Raman spectral imaging. Scientific Reports, 2015, 5, 11358.	3.3	19
139	Surface-force measurement with a laser-trapped microprobe in solution. Applied Physics Letters, 2002, 80, 3448-3450.	3.3	18
140	Effect of saturable response to two-photon absorption on the readout signal level of three-dimensional bit optical data storage in a photochromic polymer. Applied Physics Letters, 2001, 79, 148-150.	3.3	17
141	Numerical Analysis of the Near-field Diffraction Pattern of a Small Aperture. Journal of Modern Optics, 1992, 39, 645-661.	1.3	16
142	Dualâ€polarization Raman spectral imaging to extract overlapping molecular fingerprints of living cells. Journal of Biophotonics, 2015, 8, 546-554.	2.3	16
143	Multiphoton-Excited Deep-Ultraviolet Photolithography for 3D Nanofabrication. ACS Applied Nano Materials, 2020, 3, 11434-11441.	5.0	16
144	Real-Time Two-Photon Microscopy and Its Application for In Situ Imaging Acta Histochemica Et Cytochemica, 2001, 34, 399-403.	1.6	15

#	Article	IF	Citations
145	Microfabrication of Two and Three Dimensional Structures by Two-Photon Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 393-396.	0.3	15
146	Deep-ultraviolet Raman scattering spectroscopy of monolayer WS2. Scientific Reports, 2018, 8, 11398.	3.3	15
147	Pico-Newton Friction Force Measurements Using a Laser-trapped Microsphere. Japanese Journal of Applied Physics, 1998, 37, L684-L686.	1.5	14
148	Lithographic Microfabrication by Using Two-Photon Absorbing Phenylenevinylene Derivative. Molecular Crystals and Liquid Crystals, 2004, 424, 35-41.	0.9	14
149	Dynamic pH measurements of intracellular pathways using nano-plasmonic assemblies. Analyst, The, 2020, 145, 5768-5775.	3.5	14
150	Near-field infrared imaging of molecular changes in cholesteryl oleate by free electron laser infrared ablation. Journal of Applied Physics, 2004, 95, 334-338.	2.5	13
151	Tipâ€heatingâ€assisted Raman spectroscopy at elevated temperatures. Journal of Raman Spectroscopy, 2011, 42, 992-997.	2.5	11
152	Invited Article: Plasmonic growth of patterned metamaterials with fractal geometry. APL Photonics, 2016, 1, .	5.7	11
153	Direct visualization of an antidepressant analog using surface-enhanced Raman scattering in the brain. JCI Insight, 2020, 5, .	5.0	11
154	Near-infrared light transcutaneous telemetry system having an implantable transmitter driven by external laser irradiation. Review of Scientific Instruments, 2001, 72, 3079-3085.	1.3	10
155	Submicron resolution infrared microscopy by use of a near-field scanning optical microscope with an apertured cantilever. Review of Scientific Instruments, 2004, 75, 3284-3287.	1.3	10
156	Saturated excitation of fluorescent proteins for subdiffraction-limited imaging of living cells in three dimensions. Interface Focus, 2013, 3, 20130007.	3.0	10
157	Dual photonic band gap and reversible tuning of 3D photonic crystal fabricated by multiphoton polymerization withAphotoresponsive polymer. Applied Physics A: Materials Science and Processing, 2008, 93, 393-398.	2.3	9
158	Halideâ€ionâ€assisted increase of surfaceâ€enhanced hyperâ€Raman scattering: a clear observation of the chemical effect. Journal of Raman Spectroscopy, 2009, 40, 119-120.	2.5	8
159	Plasmonic resonance enhancement of single gold nanorod in two-photon photopolymerization for fabrication of polymer/metal nanocomposites. Applied Physics A: Materials Science and Processing, 2012, 106, 773-778.	2.3	8
160	Multi-focus coherent anti-Stokes Raman scattering microscopy. Microscopy and Microanalysis, 2003, 9, 1090-1091.	0.4	7
161	Twoâ€beam multiplexed CARS based on a broadband oscillator. Journal of Raman Spectroscopy, 2010, 41, 840-847.	2.5	6
162	The principle and applications of optical microscope tomography Acta Histochemica Et Cytochemica, 1986, 19, 73-81.	1.6	5

#	Article	IF	Citations
163	Optical thickness profiling using a semiconductor laser confocal microscope. Review of Scientific Instruments, 1996, 67, 2072-2078.	1.3	5
164	TWO-PHOTON ABSORBING PHENYLENEVINYLENE DERIVATIVE HAVING SILYLOXY MOIETIES IN DONOR UNITS. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 467-474.	1.8	5
165	Time-gated imaging for multifocus second-harmonic generation microscopy. Review of Scientific Instruments, 2005, 76, 073704.	1.3	5
166	Surface-Plasmon Holography. IScience, 2020, 23, 101879.	4.1	5
167	Elimination of Nonpivotal Plane Images from X-Ray Motion Tomograms. IEEE Transactions on Medical Imaging, 1985, 4, 153-159.	8.9	3
168	Characterization of Organic Photochromic Materials as 3–D Optical Data Storage Media. Molecular Crystals and Liquid Crystals, 2000, 344, 23-30.	0.3	3
169	Three-dimensional fabrication of metallic micro/nanostructures by two-photon polymerization for metamaterials., 2006,,.		3
170	Temperature-dependent Photodegradation in UV-resonance Raman Spectroscopy. Analytical Sciences, 2015, 31, 451-454.	1.6	3
171	Visualization of a Phase Object by Two-Wave Coupling in a Photorefractive Bismuth Silicon Oxide Crystal. Optical Review, 1996, 3, 124-127.	2.0	2
172	Photon-Induced Micro/Nano Fabrication, Manipulation, and Imaging with Unconventional Photo-Active Systems. Molecular Crystals and Liquid Crystals, 1998, 314, 173-178.	0.3	2
173	Dynamical Studies of Optically Induced Orientation Processes in Photochromic Isomers: Experiment and Theory. Molecular Crystals and Liquid Crystals, 2000, 344, 107-112.	0.3	2
174	Stimulation of living cells by femtosecond near-infrared laser pulses. , 2003, , .		2
175	1N1312 Time-resolved Raman imaging of malarial hemozoin(Bioimaging 1,The 49th Annual Meeting of the) Tj ET	Qql _{.1} 1 0.7	'84314 rgBT
176	Two photon polymerization lithography for 3D microfabrication of single wall carbon nanotube/polymer composites. , 2013, , .		2
177	Introduction to FUV and DUV Spectroscopy. , 2015, , 1-16.		2
178	Two-Photon Laser Micro-Nano Fabrication; Understanding from Single-Voxel Level. Materials Research Society Symposia Proceedings, 2002, 758, 461.	0.1	1
179	Dynamic Ramanâ^•SERS Imaging of Living Cells by Slit-Scanning Microscopy. AIP Conference Proceedings, 2010, , .	0.4	1
180	Femtosecond laser fabrication of gold nanorod/polymer composite microstructures. , 2012, , .		1

#	Article	IF	CITATIONS
181	Plasmon saturation induced super-resolution imaging. , 2013, , .		1
182	Near-field effects in tip-enhanced Raman scattering. , 2007, , 87-113.		1
183	Laser Feedback Microscopy Controlling the Laser Oscillation of Semiconductor Laser by Reentered Light The Review of Laser Engineering, 1996, 24, 1084-1090.	0.0	1
184	Chapter 3 Near-field effects in tip-enhanced Raman scattering. Advances in Nano-optics and Nano-photonics, 2006, , 87-113.	0.0	1
185	MULTICHANNEL Fr-IR SPECTROMETER WITH A 4096-ELEMENT INFRARED CCD. Analytical Sciences, 1991, 7, 575-576.	1.6	0
186	ãf¬ãf¼ã,¶ãf¼é¡•å¾®é¶ã•ãf<ã,¢ãf•ã,£ãf¼ãf«ãf‰å‰å{. The Review of Laser Engineering, 1996, 24, 1037-	103.7.	0
187	Negative permeability of split ring resonator in the optical frequency region. , 2005, , .		0
188	Tip-enhanced Near-field Raman Spectroscopy for Nano-imaging. Hyomen Kagaku, 2005, 26, 667-674.	0.0	0
189	Photopolymerization and Metalization for Fabricating Functional Devices and Metamaterials. Materials Research Society Symposia Proceedings, 2006, 921, 1.	0.1	0
190	Plasmonic Metamaterials for Photon Control Device., 2007,,.		0
191	Three-dimensional metal microfabrication technique by using two-photon reduction. , 2007, , .		0
192	Raman, CARS and near-field Raman-CARS microscopy for cellular and molecular imaging. Handai Nanophotonics, 2007, 3, 57-71.	0.0	0
193	3P304 Surface enhanced Raman spectroscopy of living cells with gold nanoparticles(Bioimaging. The) Tj ETQq1 1	0,784314 0.1	FrgBT /Overlo
194	3P303 Tip enhanced Raman spectroscopy for nano-analysis of biomolecules(Bioimaging. The genesis of) Tj ETQqC)	Qverlock 10
195	Tip-enhanced Raman spectroscopy with atomic site-selective sensitivity., 2007,,.		0
196	Construction of Two Color Semiconductor Quantum Dots Wire by utilizing the complementarity of DNA. AIP Conference Proceedings, 2008, , .	0.4	0
197	Nanophotonics; walking beyond the classical limits of light. , 2008, , .		0

1P-335 An optical pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart muscle cells(The 46th Annual Meeting of the Biophysical Society) Tj ETQq0 8.0 rgBT / Qverlock 100 pacemaker for heart mu

198

#	Article	lF	CITATIONS
199	New Trends in Plasmonics for New Optical Devices. The Review of Laser Engineering, 2008, 36, 111-116.	0.0	O
200	2P-325 Formation of gold nanoparticles in living cells by reduction of gold ion solution(The 46th) Tj ETQq0 0 C	rgBT/Over	lock 10 Tf 50 7
201	Nanoimaging: Plamonics and beyond the plasmonics. , 2009, , .		0
202	Size-Dependent Mechanical Properties of Polymer-nanowires Fabricated by Two-photon Lithography. Materials Research Society Symposia Proceedings, 2009, 1224, 1.	0.1	0
203	Tip-enhanced Near-field Raman Spectroscopy of Graphite Thin Layers. , 2010, , .		0
204	TERS in the Sub-Nanometric Vicinity of a Metallic Tip. , 2010, , .		0
205	Tip-Pressurized Near-Field Raman Microscopy: a Breakthrough Towards Molecular Resolution. , 2010, , .		0
206	Experimental Identification of Chemical Effects in Surface Enhanced Raman Scattering of 4-Aminothiophenol. , $2010, , .$		0
207	Optical control of cell functions: Using laser light to remote control signalling, contraction and action potentials in living cells. , 2011 , , .		O
208	Slit-scanning confocal Raman microscopy: Practical applications in live cell imaging. , 2011, , .		0
209	Single-, two-, and multi-photon driven molecular motion and nanopatterning in azo-polymer films. , $2011, , .$		O
210	Photo-polymerizable gold nanorods / methyl methacrylate composite for plasmonic optical application. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	0
211	Surface enhanced Raman scattering (SERS) imaging of intracellular transportation in 3D., 2013, , .		O
212	Saturable scattering and its application to superresolution microscopy., 2013,,.		0
213	Macroscopic Ensembles of Aligned Carbon Nanotubes in Bubble Imprints Studied by Polarized Raman Microscopy. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	O
214	Raman spectroscopic detection of bio-active small molecules using alkyne tag. , 2015, , .		0
215	Superresolution imaging based on nonlinearities of plasmonic scattering. , 2015, , .		O
216	3D nano-fabrication of metallic nano-structures. , 2016, , .		0

#	Article	IF	CITATIONS
217	Optical 3D Nano-fabrication: Drawing or Growing? (Conference Presentation)., 2017,,.		O
218	Correlative force and tip-enhanced Raman microscopy. APL Photonics, 2019, 4, 021301.	5.7	0
219	Single-Photon and Two-Photon Photopolymerization for Micro-Nano Fabrication. , 2002, , .		O
220	Resonance enhancement of coherent anti-Stokes Raman scattering microscopy. Proceedings of the JSME Bioengineering Conference and Seminar, 2002, 2002.13, 85-86.	0.0	0
221	Coherent anti-Stokes Raman scattering microscopy using near IR exitation and UV excitation. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2003, 2003.15, 137-138.	0.0	0
222	Near-Field Infrared Microspectroscopy for Chemical Imaging. The Review of Laser Engineering, 2003, 31, 829-834.	0.0	0
223	Generation and Formation of Gold Nanoparticles with Spatial Control by Two-Photon Femtosecond Laser Interference. Materials Research Society Symposia Proceedings, 2003, 780, 261.	0.1	0
224	Creation of a Micro-Nanoworld with Photons. Seikei-Kakou, 2005, 17, 524-527.	0.0	0
225	Near-Field Raman Microscopy for Nanometric Observation. Seibutsu Butsuri, 2010, 50, 300-301.	0.1	0
226	A method to control spatial coherence of a laser microscope Journal of the Spectroscopical Society of Japan, 1990, 39, 359-361.	0.0	0
227	Laser Reviews. Near-field Laser-Scanning Microscope The Review of Laser Engineering, 1996, 24, 1038-1044.	0.0	0
228	\tilde{a}_{f} \tilde{a}_{f} \tilde{a}_{f} \tilde{a}_{f} \tilde{a}_{g} . The Review of Laser Engineering, 1997, 25, 191-193,202.	0.0	0
229	Near-field Optical Sensing. The Review of Laser Engineering, 1997, 25, 207-210.	0.0	0
230	Multiphoton Microscopy: New Markets and Technology Brought by Femtosecond Lasers. The Review of Laser Engineering, 1999, 27, 804-804.	0.0	0