
Charoen Nakason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds. Polymer Composites, 2012, 33, 489-500.	2.3	83
2	Dynamic vulcanization of natural rubber/high-density polyethylene blends: Effect of compatibilization, blend ratio and curing system. Polymer Testing, 2006, 25, 782-796.	2.3	78
3	Effect of different types of peroxides on rheological, mechanical, and morphological properties of thermoplastic vulcanizates based on natural rubber/polypropylene blends. Polymer Testing, 2007, 26, 537-546.	2.3	76
4	Rheological properties of maleated natural rubber/polypropylene blends with phenolic modified polypropylene and polypropylene-g-maleic anhydride compatibilizers. Polymer Testing, 2006, 25, 413-423.	2.3	60
5	Effect of vulcanization systems on properties and recyclability of dynamically cured epoxidized natural rubber/polypropylene blends. Polymer Testing, 2008, 27, 858-869.	2.3	52
6	Influence of modifying agents of organoclay on properties of nanocomposites based on natural rubber. Polymer Testing, 2014, 33, 48-56.	2.3	50
7	The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites. Polymer Composites, 2015, 36, 2113-2122.	2.3	48
8	Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polymer Testing, 2018, 66, 122-136.	2.3	45
9	Development and preparation of highâ€performance thermoplastic vulcanizates based on blends of natural rubber and thermoplastic polyurethanes. Journal of Applied Polymer Science, 2013, 128, 2358-2367.	1.3	44
10	Ceramic/natural rubber composites: influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. Journal of Materials Science, 2011, 46, 1723-1731.	1.7	42
11	Influence of Filler from a Renewable Resource and Silane Coupling Agent on the Properties of Epoxidized Natural Rubber Vulcanizates. Journal of Chemistry, 2015, 2015, 1-15.	0.9	41
12	Graft copolymers of natural rubber and poly(dimethyl(acryloyloxymethyl)phosphonate) (NR-g-PDMAMP) or poly(dimethyl(methacryloyloxyethyl)phosphonate) (NR-g-PDMMEP) from photopolymerization in latex medium. European Polymer Journal, 2009, 45, 820-836.	2.6	40
13	Effects of <i>in-situ</i> functionalization of carbon nanotubes with bis(triethoxysilylpropyl) tetrasulfide (TESPT) and 3-aminopropyltriethoxysilane (APTES) on properties of epoxidized natural rubber-carbon nanotube composites. Polymer Engineering and Science, 2015, 55, 2500-2510.	1.5	36
14	Thermoplastic elastomers based on epoxidized natural rubber and highâ€density polyethylene blends: Effect of blend compatibilizers on the mechanical and morphological properties. Journal of Applied Polymer Science, 2008, 109, 2694-2702.	1.3	34
15	Influence of ground tire rubber devulcanization conditions on properties of its thermoplastic vulcanizate blends with copolyester. European Polymer Journal, 2016, 85, 279-297.	2.6	34
16	Novel epoxidized natural rubber composites with geopolymers from fly ash waste. Waste Management, 2019, 87, 148-160.	3.7	34
17	INFLUENCE OF MODIFIED NATURAL RUBBER ON PROPERTIES OF NATURAL RUBBER–CARBON NANOTUBE COMPOSITES. Rubber Chemistry and Technology, 2015, 88, 199-218.	0.6	33
18	Thermoplastic elastomers-based natural rubber and thermoplastic polyurethane blends. Iranian Polymer Journal (English Edition), 2012, 21, 65-79.	1.3	32

CHAROEN NAKASON

#	Article	IF	CITATIONS
19	Novel approach to determine non-rubber content in Hevea brasiliensis: Influence of clone variation on properties of un-vulcanized natural rubber. Industrial Crops and Products, 2018, 118, 38-47.	2.5	32
20	Novel thermoplastic natural rubber based on thermoplastic polyurethane blends: influence of modified natural rubbers on properties of the blends. Iranian Polymer Journal (English Edition), 2012, 21, 689-700.	1.3	31
21	Electrical, dielectric, and dynamic mechanical properties of conductive carbon black/epoxidized natural rubber composites. Journal of Composite Materials, 2016, 50, 2191-2202.	1.2	30
22	Influence of nonrubber components on properties of unvulcanized natural rubber. Polymers for Advanced Technologies, 2020, 31, 44-59.	1.6	30
23	Micro-scale morphologies of EPDM/EOC/PP ternary blends: Relating experiments to predictive theories of dispersion in melt mixing. Materials and Design, 2016, 100, 19-29.	3.3	27
24	A comparative study of rice husk ash and siliceous earth as reinforcing fillers in epoxidized natural rubber composites. Polymer Composites, 2018, 39, 414-426.	2.3	27
25	ENHANCEMENT OF ELECTRICAL CONDUCTIVITY AND FILLER DISPERSION OF CARBON NANOTUBE FILLED NATURAL RUBBER COMPOSITES BY LATEX MIXING AND IN SITU SILANIZATION. Rubber Chemistry and Technology, 2016, 89, 272-291.	0.6	26
26	Effects of imidazolium ionic liquid on cure characteristics, electrical conductivity and other related properties of epoxidized natural rubber vulcanizates. European Polymer Journal, 2017, 87, 344-359.	2.6	26
27	Influences of blend proportions and curing systems on dynamic, mechanical, and morphological properties of dynamically cured epoxidized natural rubber/highâ€density polyethylene blends. Polymer Engineering and Science, 2009, 49, 281-292.	1.5	25
28	From a laboratory to a pilot scale production of natural rubber grafted with PMMA. Journal of Applied Polymer Science, 2009, 114, 587-597.	1.3	22
29	Flexible 0–3 Ceramicâ€Polymer Composites of Barium Titanate and Epoxidized Natural Rubber. International Journal of Applied Ceramic Technology, 2015, 12, 106-115.	1.1	21
30	Influence of grafting content on the properties of cured natural rubber grafted with PMMAs using glutaraldehyde as a crossâ€linking agent. Advances in Polymer Technology, 2018, 37, 1478-1485.	0.8	21
31	Thermoplastic vulcanizates based on waste truck tire rubber and copolyester blends reinforced with carbon black. Waste Management, 2018, 79, 638-646.	3.7	20
32	Dynamically cured poly(vinylidene fluoride)/epoxidized natural rubber blends filled with ferroelectric ceramic barium titanate. Composites Part A: Applied Science and Manufacturing, 2017, 93, 107-116.	3.8	19
33	Influence type of natural rubber on properties of green biodegradable thermoplastic natural rubber based on poly(butylene succinate). Polymers for Advanced Technologies, 2019, 30, 1010-1026.	1.6	19
34	Effect of carbon nanotubes decorated with silver nanoparticles as hybrid filler on properties of natural rubber nanocomposites. Journal of Applied Polymer Science, 2019, 136, 47281.	1.3	18
35	Influence of incorporation sequence of silica nanoparticles on morphology, crystallization behavior, mechanical properties, and thermal resistance of melt blended thermoplastic natural rubber. Polymer Composites, 2012, 33, 1911-1920.	2.3	16
36	Novel ternary blends of natural rubber/linear low-density polyethylene/thermoplastic starch: influence of epoxide level of epoxidized natural rubber on blend properties. Iranian Polymer Journal (English Edition), 2016, 25, 711-723.	1.3	16

CHAROEN NAKASON

#	Article	lF	CITATIONS
37	Effects of multiâ€walled carbon nanotubes and conductive carbon black on electrical, dielectric, and mechanical properties of epoxidized natural rubber composites. Polymer Composites, 2017, 38, 1031-1042.	2.3	16
38	Mechanical, thermal, morphological, and curing properties of geopolymer filled natural rubber composites. Journal of Applied Polymer Science, 2019, 136, 47346.	1.3	14
39	Internal Polymerization of Epoxy Group of Epoxidized Natural Rubber by Ferric Chloride and Formation of Strong Network Structure. Polymers, 2021, 13, 4145.	2.0	14
40	Prediction models for the key mechanical properties of EPDM/PP blends as affected by processing parameters and their correlation with stress relaxation and phase morphologies. Polymers for Advanced Technologies, 2015, 26, 970-977.	1.6	13
41	Optimization of Electrical Conductivity, Dielectric Properties, and Stress Relaxation Behavior of Conductive Thermoplastic Vulcanizates Based on ENR/COPA Blends by Adjusting Mixing Method and Ionic Liquid Loading. Industrial & Engineering Chemistry Research, 2017, 56, 3629-3639.	1.8	13
42	Novel Biodegradable Thermoplastic Elastomer Based on Poly(butylene succinate) and Epoxidized Natural Rubber Simple Blends. Journal of Polymers and the Environment, 2018, 26, 2867-2880.	2.4	13
43	Effect of Modified Natural Rubber and Functionalization of Carbon Nanotubes on Properties of Natural Rubber Composites. Advanced Materials Research, 2013, 844, 301-304.	0.3	12
44	Novel natural rubber composites with geopolymer filler. Advances in Polymer Technology, 2018, 37, 2651-2662.	0.8	12
45	A Comparative Investigation of Rice Husk Ash and Siliceous Earth as Reinforcing Fillers in Dynamically Cured Blends of Epoxidized Natural Rubber (ENR) and Thermoplastic Polyurethane (TPU). Journal of Polymers and the Environment, 2018, 26, 1145-1159.	2.4	12
46	Green Biodegradable Thermoplastic Natural Rubber Based on Epoxidized Natural Rubber and Poly(butylene succinate) Blends: Influence of Blend Proportions. Journal of Polymers and the Environment, 2020, 28, 1050-1067.	2.4	11
47	Novel natural rubber composites based on silver nanoparticles and carbon nanotubes hybrid filler. Polymer Composites, 2020, 41, 443-458.	2.3	10
48	Effect of organoclay loading level on mechanical properties, thermomechanical behavior, and heat buildâ€up of natural rubber/organoclay nanocomposites. Polymer Composites, 2016, 37, 1735-1743.	2.3	9
49	Role of geopolymer as a cure activator in sulfur vulcanization of epoxidized natural rubber. Journal of Applied Polymer Science, 2020, 137, 48624.	1.3	9
50	Conductive elastomer composites with low percolation threshold based on carbon black and epoxidized natural rubber. Polymer Composites, 2018, 39, 1835-1844.	2.3	8
51	Influence of alkaline treatment and acetone extraction of natural rubber matrix on properties of carbon black filled natural rubber vulcanizates. Polymer Testing, 2020, 89, 106623.	2.3	8
52	Thermoplastic Elastomer Based on Epoxidized Natural Rubber/Polyamide-12 and Co-Polyamide-12 Blends. Advanced Materials Research, 0, 626, 58-61.	0.3	7
53	Thermoplastic natural rubber based on polyamide-12 blended with various types of natural rubber. Journal of Elastomers and Plastics, 2013, 45, 47-75.	0.7	6
54	Novel natural rubber-g-N-(4-hydroxyphenyl)maleimide: synthesis and its preliminary blending products with polypropylene. Iranian Polymer Journal (English Edition), 2014, 23, 1-12.	1.3	6

#	Article	IF	CITATIONS
55	Optimizing mechanical and morphological properties of biodegradable thermoplastic elastomer based on epoxidized natural rubber and poly(butylene succinate) blends. Journal of Applied Polymer Science, 2018, 135, 46541.	1.3	6
56	Influence of Surface Modification and Content of Nanosilica on Dynamic Mechanical Properties of Epoxidized Natural Rubber Nanocomposites. Advanced Materials Research, 0, 844, 289-292.	0.3	4
57	Influence of Curing Systems on Mechanical, Dynamic, and Morphological Properties of Dynamically Cured Epoxidized Natural Rubber/ Copolyamide Blends. Advanced Materials Research, 2013, 844, 81-84.	0.3	3
58	Thermodynamically and kinetically favored locations of rice husk ash particles in the phase structure, and the properties of epoxidized natural rubber/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 2018, 135, 46681.	1.3	2