Wenhao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962117/publications.pdf

Version: 2024-02-01

136950 189892 2,877 79 32 50 citations h-index g-index papers 79 79 79 1901 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Effect of High Hydrostatic Pressure on Physicochemical and Structural Properties of Rice Starch. Food and Bioprocess Technology, 2012, 5, 2233-2241.	4.7	141
2	Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. Journal of Food Engineering, 2011, 103, 388-393.	5. 2	106
3	Effects of repeated and continuous dry heat treatments on properties of sweet potato starch. International Journal of Biological Macromolecules, 2019, 129, 869-877.	7.5	94
4	The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chemistry, 2021, 335, 127655.	8.2	93
5	The improving effects of cold plasma on multi-scale structure, physicochemical and digestive properties of dry heated red adzuki bean starch. Food Chemistry, 2021, 349, 129159.	8.2	90
6	High pressure induced gelatinization of red adzuki bean starch and its effects on starch physicochemical and structural properties. Food Hydrocolloids, 2015, 45, 132-139.	10.7	82
7	The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Research International, 2018, 111, 324-333.	6.2	81
8	Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids, 2014, 40, 237-244.	10.7	80
9	Changes in structural, physicochemical, and digestive properties of normal and waxy wheat starch during repeated and continuous annealing. Carbohydrate Polymers, 2020, 247, 116675.	10.2	79
10	Comparison of pregelatinization methods on physicochemical, functional and structural properties of tartary buckwheat flour and noodle quality. Journal of Cereal Science, 2018, 80, 63-71.	3.7	77
11	Physicochemical Properties of A- and B-Starch Granules Isolated from Hard Red and Soft Red Winter Wheat. Journal of Agricultural and Food Chemistry, 2013, 61, 6477-6484.	5.2	76
12	Compositional, morphological, structural and physicochemical properties of starches from seven naked barley cultivars grown in China. Food Research International, 2014, 58, 7-14.	6.2	76
13	Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocolloids, 2016, 60, 364-373.	10.7	76
14	Repeated heat-moisture treatment exhibits superiorities in modification of structural, physicochemical and digestibility properties of red adzuki bean starch compared to continuous heat-moisture way. Food Research International, 2017, 102, 776-784.	6.2	69
15	Properties of Starch Separated From Ten Mung Bean Varieties and Seeds Processing Characteristics. Food and Bioprocess Technology, 2011, 4, 814-821.	4.7	65
16	Effects of different milling methods on physicochemical properties of common buckwheat flour. LWT - Food Science and Technology, 2018, 92, 220-226.	5.2	59
17	Effects of postharvest sodium silicate treatment on pink rot disease and oxidative stress-antioxidative system in muskmelon fruit. European Food Research and Technology, 2012, 234, 137-145.	3.3	56
18	Postharvest oxalic acid treatment induces resistance against pink rot by priming in muskmelon (Cucumis melo L.) fruit. Postharvest Biology and Technology, 2015, 106, 53-61.	6.0	55

#	Article	IF	CITATIONS
19	Characteristics of sixteen mung bean cultivars and their protein isolates. International Journal of Food Science and Technology, 2010, 45, 1205-1211.	2.7	54
20	The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of Food Science and Technology, 2018, 55, 5142-5152.	2.8	54
21	Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments. LWT - Food Science and Technology, 2022, 153, 112483.	5.2	54
22	Molecular, crystal and physicochemical properties of granular waxy corn starch after repeated freeze-thaw cycles at different freezing temperatures. International Journal of Biological Macromolecules, 2019, 133, 346-353.	7. 5	51
23	Effects of removal of surface proteins on physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat. Journal of Food Science and Technology, 2016, 53, 2673-2685.	2.8	50
24	Compositional, morphological, and physicochemical properties of starches from red adzuki bean, chickpea, faba bean, and baiyue bean grown in China. Food Science and Nutrition, 2019, 7, 2485-2494.	3.4	48
25	Microwave pretreated esterification improved the substitution degree, structural and physicochemical properties of potato starch esters. LWT - Food Science and Technology, 2018, 90, 116-123.	5.2	47
26	Physical and structural properties of potato starch modified by dielectric treatment with different moisture content. International Journal of Biological Macromolecules, 2018, 118, 1455-1462.	7.5	46
27	Grinding of maize: The effects of fine grinding on compositional, functional and physicochemical properties of maize flour. Journal of Cereal Science, 2016, 68, 25-30.	3.7	45
28	Pullulanase modification of granular sweet potato starch: Assistant effect of dielectric barrier discharge plasma on multi-scale structure, physicochemical properties. Carbohydrate Polymers, 2021, 272, 118481.	10.2	41
29	The Changes in Structural, Physicochemical, and Digestive Properties of Red Adzuki Bean Starch after Repeated and Continuous Annealing Treatments. Starch/Staerke, 2018, 70, 1700322.	2.1	36
30	Comparing the multi-scale structure, physicochemical properties and digestibility of wheat A- and B-starch with repeated versus continuous heat-moisture treatment. International Journal of Biological Macromolecules, 2020, 163, 519-528.	7. 5	36
31	Effect of germination duration on structural and physicochemical properties of mung bean starch. International Journal of Biological Macromolecules, 2020, 154, 706-713.	7.5	36
32	The influence of repeated versus continuous dry-heating on the performance of wheat starch with different amylose content. LWT - Food Science and Technology, 2021, 136, 110380.	5.2	36
33	Rheology of Mung Bean Starch Treated by High Hydrostatic Pressure. International Journal of Food Properties, 2015, 18, 81-92.	3.0	35
34	Understanding the granule, growth ring, blocklets, crystalline and molecular structure of normal and waxy wheat A- and B- starch granules. Food Hydrocolloids, 2021, 121, 107034.	10.7	33
35	Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch. International Journal of Biological Macromolecules, 2016, 83, 171-177.	7.5	32
36	Preparing potato starch nanocrystals assisted by dielectric barrier discharge plasma and its multiscale structure, physicochemical and rheological properties. Food Chemistry, 2022, 372, 131240.	8.2	32

#	Article	IF	Citations
37	Transcriptome analysis of the Yesso scallop, Patinopecten yessoensis gills in response to water temperature fluctuations. Fish and Shellfish Immunology, 2018, 80, 133-140.	3.6	30
38	Structural and physicochemical properties of mung bean starch as affected by repeated and continuous annealing and their <i>in vitro</i> digestibility. International Journal of Food Properties, 2019, 22, 898-910.	3.0	30
39	Effect of Nitrogen and Sulfur Fertilization on Accumulation Characteristics and Physicochemical Properties of A- and B-Wheat Starch. Journal of Agricultural and Food Chemistry, 2013, 61, 2418-2425.	5.2	29
40	Effects of conventional and microwave pretreatment acetylation on structural and physicochemical properties of wheat starch. International Journal of Food Science and Technology, 2018, 53, 2515-2524.	2.7	28
41	Functional Properties and Structural Characteristics of Starch–Fatty Acid Complexes Prepared at High Temperature. Journal of Agricultural and Food Chemistry, 2021, 69, 9076-9085.	5.2	28
42	Insight into the improving effect on multi-scale structure, physicochemical and rheology properties of granular cold water soluble rice starch by dielectric barrier discharge cold plasma processing. Food Hydrocolloids, 2022, 130, 107732.	10.7	28
43	Effects of ultra-high pressure combined with cold plasma on structural, physicochemical, and digestive properties of proso millet starch. International Journal of Biological Macromolecules, 2022, 212, 146-154.	7.5	26
44	The Modifications in Physicochemical and Functional Properties of Proso Millet Starch after Ultraâ∈High Pressure (UHP) Process. Starch/Staerke, 2018, 70, 1700235.	2.1	23
45	Repeated Heat-Moisture Treatment: a more EffectiveWay for Structural and Physicochemical Modification of Mung Bean Starch Compared with Continuous Way. Food and Bioprocess Technology, 2020, 13, 452-461.	4.7	23
46	Effects of germination followed by hot air and infrared drying on properties of naked barley flour and starch. International Journal of Biological Macromolecules, 2020, 165, 2060-2070.	7.5	22
47	The molecular mechanism for morphological, crystal, physicochemical and digestible property modification of wheat starch after repeated versus continuous heat-moisture treatment. LWT - Food Science and Technology, 2020, 129, 109399.	5.2	22
48	Evaluation of strawberries dried by radio frequency energy. Drying Technology, 2019, 37, 312-321.	3.1	21
49	Proximate Composition of Triangular Pea, White Pea, Spotted Colored Pea, and Small White Kidney Bean and Their Starch Properties. Food and Bioprocess Technology, 2014, 7, 1078-1087.	4.7	20
50	Physicochemical characteristics of high pressure gelatinized mung bean starch during recrystallization. Carbohydrate Polymers, 2015, 131, 432-438.	10.2	20
51	Effect of Starch Isolation Method on Structural and Physicochemical Properties of Acorn Kernel Starch. Starch/Staerke, 2020, 72, 1900122.	2.1	19
52	Effects of potassium alum addition on physicochemical, pasting, thermal and gel texture properties of potato starch. International Journal of Food Science and Technology, 2011, 46, 1621-1627.	2.7	18
53	Effects of High Hydrostatic Pressure on Rheological Properties of Rice Starch. International Journal of Food Properties, 2015, 18, 1334-1344.	3.0	17
54	Understanding the multi-scale structure, physicochemical properties and <i>in vitro</i> digestibility of citrate naked barley starch induced by non-thermal plasma. Food and Function, 2021, 12, 8169-8180.	4.6	17

#	Article	IF	CITATIONS
55	Preparation and Structure Analysis of Noncrystalline Granular Starch. International Journal of Food Engineering, 2010, 6, .	1.5	15
56	The Comparison of Structural, Physicochemical, and Digestibility Properties of Repeatedly and Continuously Annealed Sweet Potato Starch. Journal of Food Science, 2019, 84, 2050-2058.	3.1	15
57	Effect of repeated freezingâ€ŧhawing on structural, physicochemical and digestible properties of normal and waxy starch gels. International Journal of Food Science and Technology, 2019, 54, 2668-2678.	2.7	15
58	The molecular structure, morphology, and physicochemical property and digestibility of potato starch after repeated and continuous heat–moisture treatment. Journal of Food Science, 2020, 85, 4215-4224.	3.1	15
59	Germination and drying induced changes in the composition and content of phenolic compounds in naked barley. Journal of Food Composition and Analysis, 2021, 95, 103594.	3.9	15
60	Physicochemical characteristics, antioxidant capacity and thermodynamic properties of purple-fleshed potatos dried by radio frequency energy. Drying Technology, 2020, 38, 1300-1312.	3.1	14
61	Repeated and continuous dry heat treatments induce changes in physicochemical and digestive properties of mung bean starch. Journal of Food Processing and Preservation, 2021, 45, e15281.	2.0	14
62	Dielectric barrier discharge plasma improved the fine structure, physicochemical properties and digestibility of \hat{l} ±-amylase enzymatic wheat starch. Innovative Food Science and Emerging Technologies, 2022, 78, 102991.	5 . 6	14
63	Structural, physical and degradation characteristics of polyvinyl alcohol/esterified mung bean starch/gliadin ternary composite plastic. Industrial Crops and Products, 2022, 176, 114365.	5.2	13
64	Encapsulation of Capsaicin in Whey Protein and OSA-Modified Starch Using Spray-Drying: Physicochemical Properties and Its Stability. Foods, 2022, 11, 612.	4.3	13
65	Characteristics of Pitaya After Radio Frequency Treating: Structure, Phenolic Compounds, Antioxidant, and Antiproliferative Activity. Food and Bioprocess Technology, 2020, 13, 180-186.	4.7	11
66	Sodium Caseinate and Acetylated Mung Bean Starch for the Encapsulation of Lutein: Enhanced Solubility and Stability of Lutein. Foods, 2022, 11, 65.	4.3	11
67	Enhanced water solubility, stability, and in vitro antitumor activity of ferulic acid by chemical conjugation  with amino-β-cyclodextrins. Journal of Materials Science, 2020, 55, 8694-8709.	3.7	8
68	Influence of Milk and Milkâ€Born Active Peptide Addition on Textural and Sensory Characteristics of Noodle. Journal of Texture Studies, 2017, 48, 23-30.	2.5	7
69	Modification of structural and physicochemical properties of repeated freeze-thawed cycle maize starch. International Journal of Food Properties, 2020, 23, 1597-1610.	3.0	7
70	Changes in the thermal, pasting, morphological and structural characteristic of common buckwheat starch after ultrafine milling. International Journal of Food Science and Technology, 2021, 56, 2696-2707.	2.7	7
71	Insights into the relations between the molecular structures and physicochemical properties of normal and waxy wheat Bâ€starch after repeated and continuous annealing. International Journal of Food Science and Technology, 2021, 56, 6405-6419.	2.7	7
72	The Rheological Performance and Structure of Wheat/Acorn Composite Dough and the Quality and In Vitro Digestibility of Its Noodles. Foods, 2021, 10, 2727.	4.3	6

WENHAO LI

#	Article	IF	CITATION
73	Fabrication and Characterization of Whey Protein—Citrate Mung Bean Starch—Capsaicin Microcapsules by Spray Drying with Improved Stability and Solubility. Foods, 2022, 11, 1049.	4.3	6
74	Molecular structure and architectural characteristics of outer shells and inner blocklets of normal and waxy wheat A- and B- starch granules. Journal of Cereal Science, 2022, 105, 103477.	3.7	6
75	Sodium caseinate and <scp>OSA</scp> â€modified starch as carriers for the encapsulation of lutein using spray drying to improve its water solubility and stability. International Journal of Food Science and Technology, 2022, 57, 6409-6421.	2.7	5
76	The profile, content and antioxidant activity of anthocyanin in germinated naked barley grains with infrared and hot air drying. International Journal of Food Science and Technology, 2021, 56, 3834-3844.	2.7	4
77	The protein properties of germinated naked barley with infrared and hot airâ€drying and its noodleâ€making potential. International Journal of Food Science and Technology, 2021, 56, 5589-5600.	2.7	3
78	Novel amino- $\hat{1}^2$ -Cyclodextrins containing polymers: Fabrication, characterization, and biological evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111311.	5.0	2
79	Structural, Physicochemical and Functional Properties of Protein Extracted from De-Oiled Field Muskmelon (Cucumis melo L. var. agrestis Naud.) Seed Cake. Foods, 2022, 11, 1684.	4.3	2