Charlotte J Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7961904/publications.pdf

Version: 2024-02-01

26 papers

1,181 citations

394286 19 h-index 26 g-index

26 all docs

26 docs citations

times ranked

26

4530 citing authors

#	Article	IF	CITATIONS
1	Molecular connexions between dementia and diabetes. Neuroscience and Biobehavioral Reviews, 2007, 31, 1046-1063.	2.9	148
2	The Influence of Dietary Fat on Liver Fat Accumulation. Nutrients, 2014, 6, 5018-5033.	1.7	100
3	Use of Akt Inhibitor and a Drug-resistant Mutant Validates a Critical Role for Protein Kinase B/Akt in the Insulin-dependent Regulation of Glucose and System A Amino Acid Uptake. Journal of Biological Chemistry, 2008, 283, 27653-27667.	1.6	96
4	Elevated NF-κB Activation Is Conserved in Human Myocytes Cultured From Obese Type 2 Diabetic Patients and Attenuated by AMP-Activated Protein Kinase. Diabetes, 2011, 60, 2810-2819.	0.3	95
5	Are oxidative stress mechanisms the common denominator in the progression from hepatic steatosis towards nonâ€alcoholic steatohepatitis (<scp>NASH</scp>)?. Liver International, 2014, 34, e180-90.	1.9	93
6	Defining the Contribution of AMP-activated Protein Kinase (AMPK) and Protein Kinase C (PKC) in Regulation of Glucose Uptake by Metformin in Skeletal Muscle Cells. Journal of Biological Chemistry, 2012, 287, 20088-20099.	1.6	84
7	Counter-modulation of fatty acid-induced pro-inflammatory nuclear factor κB signalling in rat skeletal muscle cells by AMP-activated protein kinase. Biochemical Journal, 2011, 435, 463-474.	1.7	69
8	Glucagon Like Peptide-1-Induced Glucose Metabolism in Differentiated Human Muscle Satellite Cells Is Attenuated by Hyperglycemia. PLoS ONE, 2012, 7, e44284.	1.1	52
9	AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2019, 99, 67-80.	1.5	52
10	In vitro cellular models of human hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in human and fetal bovine culturing serum. Physiological Reports, 2017, 5, e13532.	0.7	48
11	A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA. Pharmacological Research, 2015, 100, 24-35.	3.1	47
12	The PPARδagonist, GW501516, promotes fatty acid oxidation but has no direct effect on glucose utilisation or insulin sensitivity in rat L6 skeletal muscle cells. FEBS Letters, 2007, 581, 4743-4748.	1.3	33
13	From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1-E20.	1.8	30
14	The isolation of primary hepatocytes from human tissue: optimising the use of small non-encapsulated liver resection surplus. Cell and Tissue Banking, 2017, 18, 597-604.	0.5	30
15	Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression. PLoS ONE, 2013, 8, e66628.	1.1	29
16	Development of a High-Throughput Screening Assay to Identify Inhibitors of the SARS-CoV-2 Guanine-N7-Methyltransferase Using RapidFire Mass Spectrometry. SLAS Discovery, 2021, 26, 749-756.	1.4	28
17	Characterization of lipid metabolism in a novel immortalized human hepatocyte cell line. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E511-E522.	1.8	24
18	Of mice and men: Is there a future for metformin in the treatment of hepatic steatosis?. Diabetes, Obesity and Metabolism, 2019, 21, 749-760.	2.2	23

#	Article	IF	CITATIONS
19	Optimizing human hepatocyte models for metabolic phenotype and function: effects of treatment with dimethyl sulfoxide (DMSO). Physiological Reports, 2016, 4, e12944.	0.7	21
20	Pyruvate suppresses PGC1α expression and substrate utilization despite increased respiratory chain content in C2C12 myotubes. American Journal of Physiology - Cell Physiology, 2010, 299, C240-C250.	2.1	19
21	Studying non-alcoholic fatty liver disease: the ins and outs of in vivo, ex vivo and in vitro human models. Hormone Molecular Biology and Clinical Investigation, 2020, 41, .	0.3	15
22	Characterising hyperinsulinemia-induced insulin resistance in human skeletal muscle cells. Journal of Molecular Endocrinology, 2020, 64, 125-132.	1.1	13
23	Metformin maintains intrahepatic triglyceride content through increased hepatic de novo lipogenesis. European Journal of Endocrinology, 2022, 186, 367-377.	1.9	12
24	Sodiumâ€glucose cotransporter 2 inhibition does not reduce hepatic steatosis in overweight, insulinâ€resistant patients without type 2 diabetes. JGH Open, 2020, 4, 433-440.	0.7	10
25	Modifying nutritional substrates induces macrovesicular lipid droplet accumulation and metabolic alterations in a cellular model of hepatic steatosis. Physiological Reports, 2020, 8, e14482.	0.7	7
26	Using total plasma triacylglycerol to assess hepatic <i>de novo</i> lipogenesis as an alternative to VLDL triacylglycerol. Upsala Journal of Medical Sciences, 2020, 125, 211-216.	0.4	3