Chuan-Ling Si

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7961662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 2019, 209, 130-144.	5.1	647
2	Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 7536-7562.	3.2	293
3	Lignin Nanoparticle as a Novel Green Carrier for the Efficient Delivery of Resveratrol. ACS Sustainable Chemistry and Engineering, 2017, 5, 8241-8249.	3.2	276
4	Advanced Nanocelluloseâ€Based Composites for Flexible Functional Energy Storage Devices. Advanced Materials, 2021, 33, e2101368.	11.1	251
5	Recent advances in cellulose and its derivatives for oilfield applications. Carbohydrate Polymers, 2021, 259, 117740.	5.1	229
6	Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Industrial Crops and Products, 2019, 130, 184-197.	2.5	205
7	Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocelluloseâ€Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Advanced Functional Materials, 2022, 32, .	7.8	199
8	Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. ChemSusChem, 2020, 13, 4284-4295.	3.6	188
9	Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal, 2021, 426, 130817.	6.6	170
10	Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Materials, 2022, 48, 244-262.	9.5	166
11	Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science, 2018, 2018, 1-25.	1.2	162
12	Cellulose Nanopaper: Fabrication, Functionalization, and Applications. Nano-Micro Letters, 2022, 14, 104.	14.4	161
13	Lignin-containing cellulose nanomaterials: preparation and applications. Green Chemistry, 2021, 23, 9723-9746.	4.6	159
14	Lignin-based electrodes for energy storage application. Industrial Crops and Products, 2021, 165, 113425.	2.5	157
15	Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016, 23, 2389-2407.	2.4	139
16	All-Lignin-Based Hydrogel with Fast pH-Stimuli Responsiveness for Mechanical Switching and Actuation. Chemistry of Materials, 2020, 32, 4324-4330.	3.2	136
17	Ligninâ€Based Micro―and Nanomaterials and their Composites in Biomedical Applications. ChemSusChem, 2020, 13, 4266-4283.	3.6	130
18	Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chemical Engineering Journal, 2022, 428, 131994.	6.6	130

#	Article	IF	CITATIONS
19	Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Industrial Crops and Products, 2019, 128, 177-185.	2.5	129
20	Facile Extraction of Thermally Stable and Dispersible Cellulose Nanocrystals with High Yield via a Green and Recyclable FeCl ₃ -Catalyzed Deep Eutectic Solvent System. ACS Sustainable Chemistry and Engineering, 2019, 7, 7200-7208.	3.2	122
21	Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Industrial Crops and Products, 2016, 94, 736-745.	2.5	121
22	Fabrication and applications of cellulose-based nanogenerators. Advanced Composites and Hybrid Materials, 2021, 4, 865-884.	9.9	121
23	Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2022, 5, 1078-1089.	9.9	118
24	Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. International Journal of Biological Macromolecules, 2017, 99, 674-681.	3.6	115
25	Highly Efficient Preparation of Functional and Thermostable Cellulose Nanocrystals via H2SO4 Intensified Acetic Acid Hydrolysis. Carbohydrate Polymers, 2020, 239, 116233.	5.1	107
26	Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Advanced Composites and Hybrid Materials, 2022, 5, 1168-1179.	9.9	100
27	Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydrate Polymers, 2021, 267, 118220.	5.1	99
28	Highly Efficient and Sustainable Preparation of Carboxylic and Thermostable Cellulose Nanocrystals via FeCl ₃ -Catalyzed Innocuous Citric Acid Hydrolysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 16691-16700.	3.2	96
29	Lignin Fractionation for Reduced Heterogeneity in Self-Assembly Nanosizing: Toward Targeted Preparation of Uniform Lignin Nanoparticles with Small Size. ACS Sustainable Chemistry and Engineering, 2020, 8, 9174-9183.	3.2	94
30	Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Industrial Crops and Products, 2020, 145, 112164.	2.5	94
31	Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon, 2022, 196, 819-827.	5.4	91
32	A lignin-containing cellulose hydrogel for lignin fractionation. Green Chemistry, 2019, 21, 5222-5230.	4.6	89
33	Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydrate Polymers, 2021, 266, 118107.	5.1	86
34	One-pot lignin depolymerization and activation by solid acid catalytic phenolation for lightweight phenolic foam preparation. Industrial Crops and Products, 2018, 124, 216-225.	2.5	82
35	Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydrate Polymers, 2019, 223, 115116.	5.1	81
36	Lignin fractionation: Effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Industrial Crops and Products, 2021, 165, 113442.	2.5	78

#	Article	IF	CITATIONS
37	Recent Developments and Applications of Hemicellulose From Wheat Straw: A Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 690773.	2.0	75
38	Apigenin-7-O-β- <scp>d</scp> -glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food and Function, 2016, 7, 1002-1013.	2.1	74
39	Preparation and Characterization of Chitosan by a Novel Deacetylation Approach Using Glycerol as Green Reaction Solvent. ACS Sustainable Chemistry and Engineering, 2017, 5, 4690-4698.	3.2	73
40	Comparative Evaluation of the Efficient Conversion of Corn Husk Filament and Corn Husk Powder to Valuable Materials via a Sustainable and Clean Biorefinery Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 1327-1336.	3.2	73
41	Synthesis of lignin-functionalized phenolic nanosphere supported Ag nanoparticles with excellent dispersion stability and catalytic performance. Green Chemistry, 2020, 22, 2879-2888.	4.6	71
42	Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells. Food and Chemical Toxicology, 2013, 59, 145-152.	1.8	69
43	Using Green Î ³ -Valerolactone/Water Solvent To Decrease Lignin Heterogeneity by Gradient Precipitation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10112-10120.	3.2	68
44	A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly(<scp>l</scp> -lactide). Green Chemistry, 2018, 20, 1777-1783.	4.6	65
45	A novel and efficient process for lignin fractionation in biomass-derived glycerol-ethanol solvent system. Industrial Crops and Products, 2018, 111, 201-211.	2.5	64
46	Cellulose Nanomaterials for Oil Exploration Applications. Polymer Reviews, 2022, 62, 585-625.	5.3	63
47	Multifunctional Cellulose Nanopaper with Superior Water-Resistant, Conductive, and Antibacterial Properties Functionalized with Chitosan and Polypyrrole. ACS Applied Materials & Interfaces, 2021, 13, 32115-32125.	4.0	61
48	Tailoring Silver Nanowire Nanocomposite Interfaces to Achieve Superior Stretchability, Durability, and Stability in Transparent Conductors. Nano Letters, 2022, 22, 3784-3792.	4.5	57
49	A well-defined lignin-based filler for tuning the mechanical properties of polymethyl methacrylate. Green Chemistry, 2021, 23, 2329-2335.	4.6	56
50	Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation. Chemico-Biological Interactions, 2014, 224, 108-116.	1.7	55
51	Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Advanced Composites and Hybrid Materials, 2021, 4, 1367-1383.	9.9	54
52	Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohydrate Polymers, 2021, 270, 118372.	5.1	54
53	Subdivision of bamboo kraft lignin by one-step ethanol fractionation to enhance its water-solubility and antibacterial performance. International Journal of Biological Macromolecules, 2019, 133, 156-164.	3.6	53
54	Falling Leaves Return to Their Roots: A Review on the Preparation of γâ€Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose. ChemSusChem, 2020, 13, 6461-6476.	3.6	52

#	Article	IF	CITATIONS
55	Phenolic Compounds in the Leaves of <i>Populus ussuriensis</i> and their Antioxidant Activities. Planta Medica, 2009, 75, 1165-1167.	0.7	51
56	Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. Waste Management, 2020, 108, 119-126.	3.7	51
57	Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films. Materials Science and Engineering C, 2017, 80, 397-403.	3.8	50
58	Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. Industrial Crops and Products, 2020, 145, 112154.	2.5	50
59	Green and efficient production of furfural from corn cob over H-ZSM-5 using Î ³ -valerolactone as solvent. Industrial Crops and Products, 2018, 120, 343-350.	2.5	48
60	Successive ethanol–water fractionation of enzymatic hydrolysis lignin to concentrate its antimicrobial activity. Journal of Chemical Technology and Biotechnology, 2018, 93, 2977-2987.	1.6	45
61	Resistance to aggregation-caused quenching: chitosan-based solid carbon dots for white light-emitting diode and 3D printing. Advanced Composites and Hybrid Materials, 2022, 5, 1865-1875.	9.9	45
62	Kinetic study of furfural production from Eucalyptus sawdust using H-SAPO-34 as solid BrÃ,nsted acid and Lewis acid catalysts in biomass-derived solvents. Industrial Crops and Products, 2019, 135, 196-205.	2.5	44
63	High efficient recovery of L-lactide with lignin-based filler by thermal degradation. Industrial Crops and Products, 2020, 143, 111954.	2.5	43
64	An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. Journal of Cleaner Production, 2021, 313, 127834.	4.6	43
65	Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity. Carbohydrate Polymers, 2017, 174, 450-455.	5.1	37
66	Combined bactericidal process of lignin and silver in a hybrid nanoparticle on E. coli. Advanced Composites and Hybrid Materials, 2022, 5, 1841-1851.	9.9	36
67	Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions. Industrial Crops and Products, 2022, 185, 115123.	2.5	36
68	Mild One-Pot Lignocellulose Fractionation Based on Acid-Catalyzed Biphasic Water/Phenol System to Enhance Components' Processability. ACS Sustainable Chemistry and Engineering, 2020, 8, 2772-2782.	3.2	34
69	Lignin as a Novel Tyrosinase Inhibitor: Effects of Sources and Isolation Processes. ACS Sustainable Chemistry and Engineering, 2018, 6, 9510-9518.	3.2	33
70	Fabrication of lignin nanospheres by emulsification in a binary Î ³ -valerolactone/glycerol system and their application as a bifunctional reducer and carrier for Pd nanoparticles with enhanced catalytic activity. Green Chemistry, 2020, 22, 8594-8603.	4.6	32
71	Recovery of Oligosaccharides from Prehydrolysis Liquors of Poplar by Microfiltration/Ultrafiltration Membranes and Anion Exchange Resin. ACS Sustainable Chemistry and Engineering, 2016, 4, 937-943.	3.2	28
72	Valorization of Enzymatic Hydrolysis Residues from Corncob into Lignin-Containing Cellulose Nanofibrils and Lignin Nanoparticles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 677963.	2.0	28

Chuan-Ling Si

#	Article	IF	CITATIONS
73	Size-controlled lignin nanoparticles for tuning the mechanical properties of poly(vinyl alcohol). Industrial Crops and Products, 2021, 172, 114012.	2.5	26
74	Multifunctional Lignin-Based Composite Materials for Emerging Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 708976.	2.0	25
75	Antibacterial active compounds from Hypericum ascyron L. induce bacterial cell death through apoptosis pathway. European Journal of Medicinal Chemistry, 2015, 96, 436-444.	2.6	24
76	Using Lignin Monomer As a Novel Capping Agent for Efficient Acid-Catalyzed Depolymerization of High Molecular Weight Lignin to Improve Its Antioxidant Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 9104-9114.	3.2	23
77	Phosphotungstic acid functionalized biochar for furfural production from corncob. Fuel Processing Technology, 2022, 229, 107178.	3.7	22
78	Coumarins and secoiridoid glucosides from bark of <i>Fraxinus rhynchophylla</i> Hance. Holzforschung, 2008, 62, 553-555.	0.9	21
79	Studies on the phenylethanoid glycosides with anti-complement activity from <i>Paulownia tomentosa</i> var. <i>tomentosa</i> wood. Journal of Asian Natural Products Research, 2008, 10, 1003-1008.	0.7	21
80	Chemocatalytic Conversion of Cellulose into Key Platform Chemicals. International Journal of Polymer Science, 2018, 2018, 1-21.	1.2	21
81	pH-Responsive Lignin Hydrogel for Lignin Fractionation. ACS Sustainable Chemistry and Engineering, 2021, 9, 13972-13978.	3.2	21
82	Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	21
83	Functionality study of lignin as a tyrosinase inhibitor: Influence of lignin heterogeneity on anti-tyrosinase activity. International Journal of Biological Macromolecules, 2019, 128, 107-113.	3.6	20
84	The Kinetics Studies on Hydrolysis of Hemicellulose. Frontiers in Chemistry, 2021, 9, 781291.	1.8	20
85	Chemical Constituents of the Root Barks of Eucommia ulmoides. Chemistry of Natural Compounds, 2013, 49, 974-976.	0.2	18
86	Alkylation modification for lignin color reduction and molecular weight adjustment. International Journal of Biological Macromolecules, 2022, 201, 400-410.	3.6	18
87	Lignin-Based/Polypyrrole Carbon Nanofiber Electrode With Enhanced Electrochemical Properties by Electrospun Method. Frontiers in Chemistry, 2022, 10, 841956.	1.8	18
88	Antioxidant properties and structural analysis of phenolic glucosides from bark of Populus ussuriensis Kom Wood Science and Technology, 2011, 45, 5-13.	1.4	17
89	Carboxymethylation of polysaccharide isolated from Alkaline Peroxide Mechanical Pulping (APMP) waste liquor and its bioactivity. International Journal of Biological Macromolecules, 2021, 181, 211-220.	3.6	17
90	Chemical constituents with antioxidant activity from the pericarps of Juglans sigillata. Chemistry of Natural Compounds, 2011, 47, 442-445.	0.2	16

#	Article	IF	CITATIONS
91	Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges. Current Medicinal Chemistry, 2020, 27, 4622-4646.	1.2	16
92	Stepwise Ethanol-Water Fractionation of Enzymatic Hydrolysis Lignin to Improve Its Performance as a Cationic Dye Adsorbent. Molecules, 2020, 25, 2603.	1.7	15
93	Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Advanced Composites and Hybrid Materials, 2022, 5, 1294-1306.	9.9	15
94	Reduction of lignin heterogeneity for improved catalytic performance of lignin nanosphere supported Pd nanoparticles. Industrial Crops and Products, 2022, 180, 114685.	2.5	15
95	The extract of Hypericum ascyron L. induces bacterial cell death through apoptosis pathway. Journal of Ethnopharmacology, 2015, 166, 205-210.	2.0	13
96	New acylated flavonol glycosides with antibacterial activity from root barks of Sophora japonica. Wood Science and Technology, 2016, 50, 645-659.	1.4	13
97	Recent Advances in Hydrophobic Modification of Nanocellulose. Current Organic Chemistry, 2021, 25, 417-436.	0.9	13
98	Biomedical Applications of Bacterial Cellulose based Composite Hydrogels. Current Medicinal Chemistry, 2021, 28, 8319-8332.	1.2	13
99	Epimeric phenylpropanoid glycosides from inner bark of Paulownia coreana Uyeki. Holzforschung, 2007, 61, 161-164.	0.9	12
100	Apigenin derivatives from <i>Paulownia tomentosa</i> Steud. var. <i>tomentosa</i> stem barks. Holzforschung, 2009, 63, 440-442.	0.9	12
101	A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv Holzforschung, 2010, 64, .	0.9	12
102	Preparation and Application in Water Treatment of Magnetic Biochar. Frontiers in Bioengineering and Biotechnology, 2021, 9, 769667.	2.0	12
103	Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Advanced Composites and Hybrid Materials, 2022, 5, 934-947.	9.9	12
104	Isolation and structure elucidation of secoiridoid glucosides from Fraxinus rhynchophylla leaves. Chemistry of Natural Compounds, 2009, 45, 814-816.	0.2	11
105	Isolation and structural elucidation of heartwood extractives of Juglans sigillata. Holzforschung, 2017, 71, 785-791.	0.9	10
106	Genetic Diversity, Chemical Components, and Property of Biomass Paris polyphylla var. yunnanensis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 713860.	2.0	10
107	Improvement of fermentable sugar recovery and bioethanol production from eucalyptus wood chips with the combined pretreatment of NH4Cl impregnation and refining. Industrial Crops and Products, 2021, 167, 113503.	2.5	10
108	Reduction of lignin heterogeneity using aqueous two-phase system: A facile and universal "one-step-three-fractions―approach. International Journal of Biological Macromolecules, 2021, 186, 341-350.	3.6	10

#	Article	IF	CITATIONS
109	A Rapid and Reversible pH Control Process for the Formation and Dissociation of Lignin Nanoparticles. ChemSusChem, 2022, 15, e202200449.	3.6	10
110	One step synthesis of Mo-doped carbon microspheres for valorization corncob to levulinic acid. Industrial Crops and Products, 2022, 184, 115019.	2.5	10
111	A flow-through reactor for fast fractionation and production of structure-preserved lignin. Industrial Crops and Products, 2021, 164, 113350.	2.5	9
112	Preparation, structure and α-glucosidase inhibitory of oligosaccharides by enzymatic hydrolysis from Annona squamosa polysaccharide. Industrial Crops and Products, 2022, 177, 114468.	2.5	9
113	Secondary Metabolites from the Leaves of Juglans sigillata. Chemistry of Natural Compounds, 2016, 52, 1008-1010.	0.2	8
114	Isolation and characterization of triterpenoids from the stem barks of <i>Pinus massoniana</i> . Holzforschung, 2017, 71, 697-703.	0.9	8
115	Application of Ethanol Extracts From Alnus sibirica Fisch. ex Turcz in Hair Growth Promotion. Frontiers in Bioengineering and Biotechnology, 2021, 9, 673314.	2.0	8
116	Phenolic compounds from Populus davidiana Wood. Chemistry of Natural Compounds, 2009, 45, 634-636.	0.2	7
117	Hydrolysable tannins from Juglans sigillata stem barks. Biochemical Systematics and Ecology, 2011, 39, 225-227.	0.6	7
118	Improving the efficiency of enzymatic hydrolysis of Eucalyptus residues with a modified aqueous ammonia soaking method. Nordic Pulp and Paper Research Journal, 2018, 33, 165-174.	0.3	7
119	Triterpene Saponins from Branches of Pinus massoniana. Chemistry of Natural Compounds, 2018, 54, 717-720.	0.2	7
120	Recent Advances in Bio-medicinal and Pharmaceutical Applications of Bio-based Materials. Current Medicinal Chemistry, 2020, 27, 4581-4583.	1.2	6
121	Novel Surfactant-Assisted Hydrothermal Fabrication of a Lignin Microsphere as a Green Reducer and Carrier for Pd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 17085-17095.	3.2	6
122	Phytochemical Investigation of Hydroalcoholic Extractives from Branches of Fraxinus velutina. Chemistry of Natural Compounds, 2016, 52, 132-133.	0.2	5
123	Secondary Metabolites with Anti-complementary Activity from the Stem Barks of Juglans mandshurica Maxim. Journal of the Korean Wood Science and Technology, 2018, 46, 118-124.	0.8	4
124	Extractives of Cercidiphyllum japonicum twigs: isolation and structural elucidation of a new galloylflavonol glycoside, anomeric tannins and flavonoids. Holzforschung, 2018, 72, 719-725.	0.9	3
125	Ulmus davidiana var. japonica Extracts Suppress Lipopolysaccharide-Induced Apoptosis Through Intracellular Calcium Modulation in U937 Macrophages. Frontiers in Energy Research, 2022, 10, .	1.2	3
126	Optimization of eucalyptus pretreatment by NH ₄ Cl using response surface methodology. Nordic Pulp and Paper Research Journal, 2017, 32, 459-465.	0.3	2

#	Article	IF	CITATIONS
127	Hydroxyl Radical Scavenging Properties of the Secondary Metabolites from Paulownia tomentosa var. tomentosa. Chemistry of Natural Compounds, 2013, 49, 110-112.	0.2	1
128	Lignin-based materials for drug and gene delivery. , 2021, , 327-370.		1
129	Isolation and Structural Characterization of the Chemical Constituents of Pinus pumila Seeds. Chemistry of Natural Compounds, 2021, 57, 985-987.	0.2	1
130	Secondary Metabolites from Stem Barks of Catalpa bungei. Chemistry of Natural Compounds, 2021, 57, 1111-1113.	0.2	1
131	Bark extractives of Catalpa bungei: isolation, purification and structural elucidation of triterpene, phytosterol and flavonoid derivatives. Wood Science and Technology, 2021, 55, 231-241.	1.4	0
132	Novel and Efficient Lignin Fractionation Processes for Tailing Lignin-Based Materials. , 2021, , 363-387.		0