Thorsten Buhrke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7961588/publications.pdf

Version: 2024-02-01

26 1,147 18 29
papers citations h-index g-index

29 29 29 1543
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	In vitro toxicological characterization of perfluorinated carboxylic acids with different carbon chain lengths. Toxicology Letters, 2013, 218, 97-104.	0.8	136
2	Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicology in Vitro, 2020, 62, 104700.	2.4	131
3	Agonistic and antagonistic effects of phthalates and their urinary metabolites on the steroid hormone receptors $\text{ER}\hat{1}_+$, $\text{ER}\hat{1}$, and AR. Toxicology Letters, 2017, 277, 54-63.	0.8	99
4	Absorption and metabolism of the food contaminant 3-chloro-1,2-propanediol (3-MCPD) and its fatty acid esters by human intestinal Caco-2 cells. Archives of Toxicology, 2011, 85, 1201-1208.	4.2	91
5	Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicology Letters, 2018, 291, 51-60.	0.8	80
6	Polycyclic aromatic hydrocarbons stimulate human CYP3A4 promoter activity via PXR. Toxicology Letters, 2013, 222, 180-188.	0.8	79
7	Perfluorooctanoic acid (PFOA) affects distinct molecular signalling pathways in human primary hepatocytes. Toxicology, 2015, 333, 53-62.	4.2	70
8	Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells. Archives of Toxicology, 2020, 94, 1673-1686.	4.2	60
9	The urinary metabolites of DINCH \hat{A}^{\otimes} have an impact on the activities of the human nuclear receptors ERα, ERβ, AR, PPARα and PPARγ. Toxicology Letters, 2018, 287, 83-91.	0.8	45
10	Analysis of proteomic changes induced upon cellular differentiation of the human intestinal cell line Cacoâ€2. Development Growth and Differentiation, 2011, 53, 411-426.	1.5	40
11	Proteomic analysis of 3-MCPD and 3-MCPD dipalmitate toxicity in rat testis. Food and Chemical Toxicology, 2015, 83, 84-92.	3.6	37
12	Proteomic analysis of 3-MCPD and 3-MCPD dipalmitate-induced toxicity in rat kidney. Archives of Toxicology, 2016, 90, 1437-1448.	4.2	37
13	2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells. Archives of Toxicology, 2015, 89, 2243-2251.	4.2	34
14	In silico genotoxicity and carcinogenicity prediction for food-relevant secondary plant metabolites. Food and Chemical Toxicology, 2018, 116, 298-306.	3.6	32
15	Use of in silico models for prioritization of heat-induced food contaminants in mutagenicity and carcinogenicity testing. Archives of Toxicology, 2017, 91, 3157-3174.	4.2	31
16	Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat. Archives of Toxicology, 2017, 91, 3145-3155.	4.2	27
17	Correlation between 3-MCPD-induced organ toxicity and oxidative stress response in male mice. Food and Chemical Toxicology, 2020, 136, 110957.	3.6	26
18	Oxidative inactivation of the endogenous antioxidant protein DJ-1 by the food contaminants 3-MCPD and 2-MCPD. Archives of Toxicology, 2018, 92, 289-299.	4.2	22

#	Article	IF	CITATIONS
19	Comparative analysis of transcriptomic responses to repeated-dose exposure to 2-MCPD and 3-MCPD in rat kidney, liver and testis. Food and Chemical Toxicology, 2017, 106, 36-46.	3.6	17
20	miRNA Expression in Human Intestinal Cacoâ€⊋ Cells is Comparably Regulated by <i>cis</i> a€•and <i>trans</i> â€Fatty Acids. Lipids, 2015, 50, 227-239.	1.7	12
21	Absorption and Metabolism of <i>cis</i> â€9, <i>trans</i> ê11â€CLA and of Its Oxidation Product 9,11â€Furan Fatty Acid by Cacoâ€2 Cells. Lipids, 2012, 47, 435-442.	1.7	9
22	Inâ€Vitro Toxicological and Proteomic Analysis of Furan Fatty Acids Which are Oxidative Metabolites of Conjugated Linoleic Acids. Lipids, 2012, 47, 1085-1097.	1.7	6
23	Effects of 2-MCPD on oxidative stress in different organs of male mice. Food and Chemical Toxicology, 2020, 142, 111459.	3.6	5
24	Morphological and molecular characterization of the human breast epithelial cell line M13SV1 and its tumorigenic derivatives M13SV1-R2-2 and M13SV1-R2-N1. Cancer Cell International, 2015, 15, 110.	4.1	4
25	The use of 3D cultures of MCF-10A and MCF-12A cells by high content screening for effect-based analysis of non-genotoxic carcinogens. Toxicology in Vitro, 2019, 59, 55-63.	2.4	4
26	Absorption and metabolism of 3-MCPD in hepatic and renal cell lines. Toxicology in Vitro, 2021, 70, 105042.	2.4	2