List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7961526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Applied Clay Science, 2018, 153, 38-45.	2.6	489
2	Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: A review. Journal of Water Process Engineering, 2021, 42, 102089.	2.6	181
3	Review on discharge Plasma for water treatment: mechanism, reactor geometries, active species and combined processes. Journal of Water Process Engineering, 2020, 38, 101664.	2.6	116
4	Effective heterogeneous electro-Fenton process for the degradation of a malodorous compound, indole, using iron loaded alginate beads as a reusable catalyst. Applied Catalysis B: Environmental, 2016, 182, 47-58.	10.8	99
5	Electro-Fenton catalyzed with magnetic chitosan beads for the removal of Chlordimeform insecticide. Applied Catalysis B: Environmental, 2018, 226, 346-359.	10.8	89
6	Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: Scavenger study and process intensification feasibility. Chemical Engineering and Processing: Process Intensification, 2017, 122, 213-221.	1.8	78
7	Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: Central composite design, kinetic and isotherm studies using Brouers-Sotolongo family models. Journal of Hazardous Materials, 2020, 387, 121675.	6.5	77
8	Activation of persulfate by irradiated laterite for removal of fluoroquinolones in multi-component systems. Journal of Hazardous Materials, 2018, 346, 159-166.	6.5	72
9	Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers, 2020, 12, 1142.	2.0	69
10	Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination – Synergetic effect and byproducts identification. Chemical Engineering Journal, 2014, 254, 124-132.	6.6	67
11	Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment: By-products monitoring and performance enhancement. Journal of Hazardous Materials, 2018, 359, 85-95.	6.5	66
12	Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: biomasses characterization and adsorption properties. Environmental Science and Pollution Research, 2017, 24, 9831-9846.	2.7	65
13	A new hetero-junction p -CuO/ n -ZnO for the removal of amoxicillin by photocatalysis under solar irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68, 254-265.	2.7	64
14	Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: Abatement of pollutants in air mixture system. Applied Catalysis B: Environmental, 2017, 213, 53-61.	10.8	64
15	Photocatalytic oxidation of trimethylamine and isovaleraldehyde in an annular reactor: Influence of the mass transfer and the relative humidity. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 236, 61-69.	2.0	63
16	Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing materials. Journal of Alloys and Compounds, 2015, 620, 129-136.	2.8	63
17	A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. Journal of Water Process Engineering, 2022, 47, 102801.	2.6	61
18	Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HiPIMS on polyester cloth under low intensity visible light. Applied Catalysis B: Environmental, 2019, 259, 118074.	10.8	58

#	Article	IF	CITATIONS
19	Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids and Surfaces B: Biointerfaces, 2018, 170, 92-98.	2.5	57
20	Abatement of ammonia and butyraldehyde under non-thermal plasma and photocatalysis: Oxidation processes for the removal of mixture pollutants at pilot scale. Chemical Engineering Journal, 2018, 344, 165-172.	6.6	55
21	High efficient Cefixime removal from water by the sillenite Bi12TiO20: Photocatalytic mechanism and degradation pathway. Journal of Cleaner Production, 2022, 330, 129934.	4.6	54
22	Pilot scale degradation of mono and multi volatile organic compounds by surface discharge plasma/TiO2 reactor: Investigation of competition and synergism. Journal of Hazardous Materials, 2018, 357, 305-313.	6.5	53
23	Modeling and simulation of VOCs removal by nonthermal plasma discharge with photocatalysis in a continuous reactor: Synergetic effect and mass transfer. Chemical Engineering Journal, 2014, 258, 119-127.	6.6	49
24	Treatment of hospital indoor air by a hybrid system of combined plasma with photocatalysis: Case of trichloromethane. Chemical Engineering Journal, 2018, 349, 276-286.	6.6	49
25	Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation. Materials, 2019, 12, 412.	1.3	49
26	Efficiency of DMSO as hydroxyl radical probe in an Electrochemical Advanced Oxidation Process â^' Reactive oxygen species monitoring and impact of the current density. Electrochimica Acta, 2017, 246, 1-8.	2.6	48
27	Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: Effect of different operating parameters and chemical degradation pathway. Chemical Engineering Research and Design, 2013, 91, 1307-1316.	2.7	46
28	A study of pollution removal in exhaust gases from animal quartering centers by combining photocatalysis with surface discharge plasma: From pilot to industrial scale. Chemical Engineering and Processing: Process Intensification, 2017, 111, 1-6.	1.8	45
29	Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: Dynamics and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 94-102.	2.0	45
30	Artificial neural network modeling of cefixime photodegradation by synthesized CoBi2O4 nanoparticles. Environmental Science and Pollution Research, 2021, 28, 15436-15452.	2.7	45
31	Association of surface dielectric barrier discharge and photocatalysis in continuous reactor at pilot scale: Butyraldehyde oxidation, by-products identification and ozone valorization. Chemical Engineering Journal, 2016, 292, 276-283.	6.6	43
32	Reactive oxygen and iron species monitoring to investigate the electro-Fenton performances. Impact of the electrochemical process on the biodegradability of metronidazole and its by-products. Chemosphere, 2018, 199, 486-494.	4.2	43
33	Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water. Chemosphere, 2018, 195, 847-853.	4.2	43
34	Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: Competition effect and kinetic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112722.	2.0	43
35	Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma. Chemical Engineering Research and Design, 2016, 106, 308-314.	2.7	41
36	Study of synergetic effect by surface discharge plasma/TiO2 combination for indoor air treatment: Sequential and continuous configurations at pilot scale. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 310, 148-154.	2.0	40

#	Article	IF	CITATIONS
37	Isovaleraldehyde elimination by UV/TiO2 photocatalysis: comparative study of the process at different reactors configurations and scales. Environmental Science and Pollution Research, 2014, 21, 11178-11188.	2.7	39
38	Chemical treatment of orange tree sawdust for a cationic dye enhancement removal from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment, 2016, 57, 22107-22119.	1.0	39
39	Discoloration of simulated textile effluent in continuous photoreactor using immobilized titanium dioxide: Effect of zinc and sodium chloride. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 111-120.	2.0	39
40	A comparative study of ceramic nanoparticles synthesized for antibiotic removal: catalysis characterization and photocatalytic performance modeling. Environmental Science and Pollution Research, 2021, 28, 13900-13912.	2.7	39
41	Synthesis and Characterization of ZnBi2O4 Nanoparticles: Photocatalytic Performance for Antibiotic Removal under Different Light Sources. Applied Sciences (Switzerland), 2021, 11, 3975.	1.3	39
42	Structural and electrochemical characterizations of Bi12CoO20 sillenite crystals: degradation and reduction of organic and inorganic pollutants. Journal of Materials Science: Materials in Electronics, 2021, 32, 16411-16420.	1.1	39
43	Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: Dye recovery and anodic oxidation efficiencies of the desorbed solutions. Journal of Cleaner Production, 2018, 201, 28-38.	4.6	38
44	Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and photocatalysis at pilot scale. Environmental Science and Pollution Research, 2014, 21, 13127-13137.	2.7	37
45	Isovaleraldehyde degradation using UV photocatalytic and dielectric barrier discharge reactors, and their combinations. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 110-117.	2.0	37
46	Synergism between non-thermal plasma and photocatalysis: Implicationsin the post discharge of ozone at a pilot scale in a catalytic fixed-bed reactor. Applied Catalysis B: Environmental, 2019, 241, 227-235.	10.8	37
47	Abatement of 3-methylbutanal and trimethylamine with combined plasma and photocatalysis in a continuous planar reactor. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 282, 1-8.	2.0	36
48	Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor. Chemical Engineering Research and Design, 2015, 93, 640-651.	2.7	35
49	Indoor air treatment of refrigerated food chambers with synergetic association between cold plasma and photocatalysis: Process performance and photocatalytic poisoning. Chemical Engineering Journal, 2020, 382, 122951.	6.6	35
50	Red mud-activated peroxymonosulfate process for the removal of fluoroquinolones in hospital wastewater. Water Research, 2020, 184, 116171.	5.3	35
51	Combining photocatalytic process and biological treatment for Reactive Green 12 degradation: optimization, mineralization, and phytotoxicity with seed germination. Environmental Science and Pollution Research, 2021, 28, 12490-12499.	2.7	34
52	Photocatalytic degradation of binary and ternary mixtures of antibiotics: reactive species investigation in pilot scale. Chemical Engineering Research and Design, 2019, 144, 300-309.	2.7	33
53	Advanced Photocatalytic Treatment of Wastewater Using Immobilized Titanium Dioxide as a Photocatalyst in a Pilot-Scale Reactor: Process Intensification. Materials, 2022, 15, 4547.	1.3	31
54	Photocatalytic treatment of petroleum industry wastewater using recirculating annular reactor: comparison of experimental and modeling. Environmental Science and Pollution Research, 2019, 26, 19035-19046.	2.7	30

#	Article	IF	CITATIONS
55	Innovative photocatalytic reactor for the degradation of VOCs and microorganism under simulated indoor air conditions: Cu-Ag/TiO2-based optical fibers at a pilot scale. Chemical Engineering Journal, 2021, 411, 128622.	6.6	30
56	Bismuth Sillenite Crystals as Recent Photocatalysts for Water Treatment and Energy Generation: A Critical Review. Catalysts, 2022, 12, 500.	1.6	30
57	Integrated process for the removal of indoor VOCs from food industry manufacturing: Elimination of Butane-2,3-dione and Heptan-2-one by cold plasma-photocatalysis combination. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112071.	2.0	29
58	Study of butyraldehyde degradation and by-products formation by using a surface plasma discharge in pilot scale: Process modeling and simulation of relative humidity effect. Chemical Engineering Journal, 2017, 307, 785-792.	6.6	26
59	Modeling and optimization of process parameters in elucidating the adsorption mechanism of Gallic acid on activated carbon prepared from date stones. Separation Science and Technology, 2020, 55, 3113-3125.	1.3	26
60	A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts, 2021, 11, 1498.	1.6	26
61	Photocatalytic performance of TiO 2 impregnated polyester for the degradation of Reactive Green 12: Implications of the surface pretreatment and the microstructure. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 493-501.	2.0	25
62	Review on inactivation of airborne viruses using non-thermal plasma technologies: from MS2 to coronavirus. Environmental Science and Pollution Research, 2022, 29, 4880-4892.	2.7	25
63	Harmonizing the photocatalytic activity of g-C3N4 nanosheets by ZrO2 stuffing: From fabrication to experimental study for the wastewater treatment. Biochemical Engineering Journal, 2022, 182, 108411.	1.8	24
64	Techno-economic studies for a pilot-scale Bi12TiO20 based photocatalytic system for pharmaceutical wastewater treatment: From laboratory studies to commercial-scale applications. Journal of Water Process Engineering, 2022, 48, 102847.	2.6	24
65	Innovative and stable TiO 2 supported catalytic surfaces removing aldehydes under UV-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 343, 96-102.	2.0	22
66	Disinfection of corona and myriad viruses in water by non-thermal plasma: a review. Environmental Science and Pollution Research, 2022, 29, 55321-55335.	2.7	21
67	Photocatalytic Treatment of Wastewater Containing Simultaneous Organic and Inorganic Pollution: Competition and Operating Parameters Effects. Catalysts, 2021, 11, 855.	1.6	19
68	Characterization of Slaughterhouse Wastewater and Development of Treatment Techniques: A Review. Processes, 2022, 10, 1300.	1.3	19
69	Application of Bi12ZnO20 Sillenite as an Efficient Photocatalyst for Wastewater Treatment: Removal of Both Organic and Inorganic Compounds. Materials, 2021, 14, 5409.	1.3	17
70	Modeling of indoor air treatment using an innovative photocatalytic luminous textile: Reactor compactness and mass transfer enhancement. Chemical Engineering Journal, 2022, 430, 132636.	6.6	17
71	Electro Fenton removal of clopyralid in soil washing effluents. Chemosphere, 2019, 237, 124447.	4.2	16
72	Recent progress in air treatment with combined photocatalytic/plasma processes: A review. Journal of Environmental Management, 2021, 299, 113588.	3.8	16

#	Article	IF	CITATIONS
73	Enhanced removal of antibiotics in hospital wastewater by Fe–ZnO activated persulfate oxidation. Environmental Science: Water Research and Technology, 2019, 5, 2193-2201.	1.2	15
74	Facile synthesis, structural and optical characterizations of Bi12ZnO20 sillenite crystals: Application for Cefuroxime removal from wastewater. Materials Letters, 2021, 304, 130658.	1.3	15
75	Continuous air purification by front flow photocatalytic reactor: Modelling of the influence of mass transfer step under simulated real conditions. Chemosphere, 2022, 295, 133809.	4.2	15
76	Methods for Synthesis of Hybrid Nanoparticles. , 2019, , 51-63.		14
77	Synthesis and Characterization of TiO2 Nanotubes (TiO2-NTs) with Ag Silver Nanoparticles (Ag-NPs): Photocatalytic Performance for Wastewater Treatment under Visible Light. Materials, 2022, 15, 1463.	1.3	13
78	Acceleration of Trimethylamine Removal Process Under Synergistic Effect of Photocatalytic Oxidation and Surface Discharge Plasma Reactor. Canadian Journal of Chemical Engineering, 2015, 93, 1239-1246.	0.9	12
79	Innovative photocatalytic luminous textiles optimized towards water treatment: Performance evaluation of photoreactors. Chemical Engineering Journal, 2021, 416, 129195.	6.6	12
80	Kinetic Modeling of VOC Photocatalytic Degradation Using a Process at Different Reactor Configurations and Scales. International Journal of Chemical Reactor Engineering, 2016, 14, 395-405.	0.6	11
81	Nano-sized iron oxides supported on polyester textile to remove fluoroquinolones in hospital wastewater. Environmental Science: Nano, 2020, 7, 2156-2165.	2.2	11
82	Innovative sequential combination of fixed bed adsorption/desorption and photocatalysis cost-effective process to remove antibiotics in solution. Progress in Organic Coatings, 2021, 151, 106014.	1.9	11
83	Enoxacin degradation by photo-Fenton process combined with a biological treatment: optimization and improvement of by-products biodegradability. International Journal of Environmental Science and Technology, 2019, 16, 655-666.	1.8	9
84	Titanium-based photocatalytic coatings for bacterial disinfection: The shift from suspended powders to catalytic interfaces. Surfaces and Interfaces, 2022, 32, 102078.	1.5	9
85	An engineering approach towards the design of an innovative compact photo-reactor for antibiotic removal in the frame of laboratory and pilot-plant scale. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113445.	2.0	7
86	Spectroscopic properties of Yb ²⁺ in aluminosilicate glass. International Journal of Applied Glass Science, 2017, 8, 322-328.	1.0	6
87	Optimization of the artificial neuronal network for the degradation and mineralization of amoxicillin photoinduced by the complex ferrioxalate with a gradual and progressive approach of the ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 112982.	2.0	6
88	Reconsideration of the contribution of photogenerated ROS in methyl orange degradation on TiO2, Cu2O, WO3, and Bi2O3 under low-intensity simulated solar light: mechanistic understanding of photocatalytic activity. Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 1.	0.6	6
89	Thermal and Spectroscopic Properties of High Dense Optical Glasses TeO2–Bi2O3–WO3 (TBW) Doped with Er2O3 as Laser Material. Science of Advanced Materials, 2018, 10, 818-826.	0.1	6
90	Treatment of gaseous effluents by using surface discharge plasma in continuous reactors: Process modelling and simulation. Canadian Journal of Chemical Engineering, 2015, 93, 206-212.	0.9	5

#	Article	IF	CITATIONS
91	The impact of material design on the photocatalytic removal efficiency and toxicity of two textile dyes. Environmental Science and Pollution Research, 2022, 29, 66640-66658.	2.7	5
92	Synthesis and Characterization of TiO2 Nanotubes (TiO2-NTs) Decorated with Platine Nanoparticles (Pt-NPs): Photocatalytic Performance for Simultaneous Removal of Microorganisms and Volatile Organic Compounds. Materials, 2021, 14, 7341.	1.3	4
93	Combined system of natural pomegranate as heterogeneous bioadsorbent and photocatalysis for removal of textile dye herbicide in presence of heavy metals: effect of operating parameters and reaction monitoring. , 0, 67, 339-335.		3
94	Photocatalytic degradation of indole–4-methylphenol mixture in an aqueous solution: optimization and statistical analysis. Desalination and Water Treatment, 0, , 1-12.	1.0	0
95	Photo-plasma catalytic hybrid systems for air treatment: reactor design from laboratory to industrial scales. , 2020, , 373-389.		0
96	Nanocontainer: An introduction. , 2020, , 3-6.		0
97	Integration of nondestructive processes: adsorption/uptake/absorption. , 2022, , 345-356.		0
98	The photocatalytic degradation of a binary textile dyes mixture within a new configuration of loop reactor using ZnO thin film-phytotoxicity control. Comptes Rendus Chimie, 2022, 25, 261-279.	0.2	0