Philippe Vivin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7961201/publications.pdf Version: 2024-02-01

Dhilidde Vivin

#	Article	IF	CITATIONS
1	Ecophysiological, Genetic, and Molecular Causes of Variation in Grape Berry Weight and Composition: A Review. American Journal of Enology and Viticulture, 2011, 62, 413-425.	1.7	205
2	Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany, 2007, 59, 139-149.	4.2	156
3	Model-based analysis of sugar accumulation in response to source - sink ratio and water supply in grape (Vitis vinifera) berries. Functional Plant Biology, 2009, 36, 527.	2.1	59
4	Physiological and modelling approaches to understand water and carbon fluxes during grape berry growth and quality development: a review. Australian Journal of Grape and Wine Research, 2010, 16, 70-85.	2.1	54
5	Modelling grape growth in relation to whole-plant carbon and water fluxes. Journal of Experimental Botany, 2019, 70, 2505-2521.	4.8	45
6	Shoot and root ionome responses to nitrate supply in grafted grapevines are rootstock genotype dependent. Australian Journal of Grape and Wine Research, 2015, 21, 311-318.	2.1	44
7	Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology, 2018, 38, 1026-1040.	3.1	44
8	Root transcriptomic responses of grafted grapevines to heterogeneous nitrogen availability depend on rootstock genotype. Journal of Experimental Botany, 2017, 68, 4339-4355.	4.8	42
9	A 3-D functional–structural grapevine model that couples the dynamics of water transport with leaf gas exchange. Annals of Botany, 2018, 121, 833-848.	2.9	40
10	Phosphorus acquisition efficiency and phosphorus remobilization mediate genotype-specific differences in shoot phosphorus content in grapevine. Tree Physiology, 2018, 38, 1742-1751.	3.1	25
11	Pathogenicity Traits Correlate With the Susceptible Vitis vinifera Leaf Physiology Transition in the Biotroph Fungus Erysiphe necator: An Adaptation to Plant Ontogenic Resistance. Frontiers in Plant Science, 2018, 9, 1808.	3.6	23
12	Potential contribution of strigolactones in regulating scion growth and branching in grafted grapevine in response to nitrogen availability. Journal of Experimental Botany, 2018, 69, 4099-4112.	4.8	22
13	Scion genotypes exert long distance control over rootstock transcriptome responses to low phosphate in grafted grapevine. BMC Plant Biology, 2020, 20, 367.	3.6	17
14	Resource competition modulates the seed number–fruit size relationship in a genotype-dependent manner: A modeling approach in grape and tomato. Ecological Modelling, 2014, 290, 54-64.	2.5	13
15	Identifying roles of the scion and the rootstock in regulating plant development and functioning under different phosphorus supplies in grapevine. Environmental and Experimental Botany, 2021, 185, 104405.	4.2	8
16	Analyzing the functional association among seed traits, berry growth and chemical composition in Cabernet-Sauvignon berry (Vitis vinifera L.) using a mathematical growth function. Oeno One, 2016, 43, 35.	1.4	4
17	Adaptation to climate change of the French wine industry: a systemic approach $\hat{a} \in Main$ outcomes of the project LACCAVE. E3S Web of Conferences, 2018, 50, 01020.	0.5	2
18	Fruit size in relation to competition for resources: A common model shared by two species and several genotypes grown under contrasted carbohydrate levels. , 2012, , .		1

0

#	Article	IF	CITATIONS
19	Combining ecophysiological models and genetic analysis: a promising way to dissect complex adaptive traits in grapevine. Oeno One, 2017, 51, 181.	1.4	1

20 Growing grapes on a virtual plant. , 2018, , .