
Christophe Daniel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7961074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast uptake of organic pollutants from dilute aqueous solutions by nanoporous-crystalline PPO films with c-perpendicular orientation. European Polymer Journal, 2022, 164, 110976.	2.6	3
2	Nanoporous–Crystalline Poly(2,6-dimethyl-1,4-phenylene)oxide Aerogels with Selectively Sulfonated Amorphous Phase for Fast VOC Sorption from Water. Materials, 2022, 15, 1947.	1.3	3
3	High Surface Area Nanoporous-Crystalline Polymer Films. Macromolecules, 2022, 55, 2983-2990.	2.2	12
4	<i>c</i> â€perpendicular orientation in thin <scp>nanoporousâ€crystalline</scp> poly(2,6â€dimethylâ€1,4â€phenylene)oxide films. Polymers for Advanced Technologies, 2022, 33, 2344-2351.	1.6	3
5	High surface area polymer films by co-crystallization with low-molecular-mass guest molecules. European Polymer Journal, 2022, , 111305.	2.6	1
6	Tailoring novel polymer/UTSA-16 hybrid aerogels for efficient CH4/CO2 separation. Microporous and Mesoporous Materials, 2022, 341, 112106.	2.2	5
7	Control of Guest Thermal Release by Crystalline Host Orientation. ACS Applied Polymer Materials, 2021, 3, 949-955.	2.0	8
8	c-Perpendicular Orientation of Poly(ÊŸ-lactide) Films. Polymers, 2021, 13, 1572.	2.0	5
9	Planar Orientation and Transparency of Nanoporous-Crystalline Polymer Films. Macromolecules, 2021, 54, 6605-6611.	2.2	13
10	Melting of nanoporous-crystalline and co-crystalline solution cast films of poly(2,6-dimethyl-1,4-phenylene) oxide. Polymer, 2021, 228, 123935.	1.8	9
11	Axially oriented guest induced crystallization in syndiotactic polystyrene unstretched fibers. Polymer, 2021, 228, 123908.	1.8	9
12	High diffusivity dense films of a nanoporous-crystalline polymer. Polymer, 2021, 229, 124005.	1.8	18
13	Catalytic system based on recyclable Fe0 and ZnS semiconductor for UV-promoted degradation of chlorinated organic compounds. Separation and Purification Technology, 2021, 270, 118830.	3.9	9
14	Monomeric and Dimeric Carboxylic Acid in Crystalline Cavities and Channels of Delta and Epsilon Forms of Syndiotactic Polystyrene. Polymers, 2021, 13, 3330.	2.0	10
15	Mechanisms determining different planar orientations in PPO films crystallized by guest sorption. Polymer, 2021, 235, 124242.	1.8	11
16	Fast uptake of organic pollutants from dilute aqueous solutions by nanoporous-crystalline PPO films with c-perpendicular orientation. European Polymer Journal, 2021, 161, 110864.	2.6	14
17	Molecular Features Behind Formation of $\hat{I}\pm$ or \hat{I}^2 Co-Crystalline and Nanoporous-Crystalline Phases of PPO. Frontiers in Chemistry, 2021, 9, 809850.	1.8	7
18	Dependence on Film Thickness of Guest-Induced c Perpendicular Orientation in PPO Films. Polymers, 2021, 13, 4384.	2.0	11

#	Article	IF	CITATIONS
19	Nanoporous polymeric aerogels–based structured photocatalysts for the removal of organic pollutant from water under visible or solar light. , 2020, , 99-120.		3
20	Guest induced transition from \hat{l}^2 to \hat{l}_{\pm} nanoporous crystalline forms of PPO. Polymer, 2020, 187, 122083.	1.8	10
21	Thermal shrinkage and heat capacity of monolithic polymeric physical aerogels. Polymer, 2020, 210, 123073.	1.8	4
22	Nanoporous Crystalline Composite Aerogels with Reduced Graphene Oxide. Molecules, 2020, 25, 5241.	1.7	3
23	Axial Orientation of Co-Crystalline Phases of Poly(2,6-Dimethyl-1,4-Phenylene)Oxide Films. Polymers, 2020, 12, 2394.	2.0	9
24	Polymorphism of Poly(2,6-dimethyl-1,4-phenylene)oxide in Axially Stretched Films. Macromolecules, 2020, 53, 2287-2294.	2.2	17
25	Axially Oriented Nanoporous Crystalline Phases of Poly(2,6-dimethyl-1,4-phenylene)oxide. ACS Applied Polymer Materials, 2020, 2, 3518-3524.	2.0	16
26	Highly Robust and Selective System for Water Pollutants Removal: How to Transform a Traditional Photocatalyst into a Highly Robust and Selective System for Water Pollutants Removal. Nanomaterials, 2019, 9, 1509.	1.9	22
27	Two Nanoporous Crystalline Forms of Poly(2,6-dimethyl-1,4-phenylene)oxide and Related Co-Crystalline Forms. Macromolecules, 2019, 52, 9646-9656.	2.2	50
28	Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels. Materials Science in Semiconductor Processing, 2018, 80, 104-110.	1.9	40
29	Packaging technology for improving shelfâ€life of fruits based on a nanoporous–crystalline polymer. Journal of Applied Polymer Science, 2018, 135, 46256.	1.3	12
30	Etched Fibers of Syndiotactic Polystyrene with Nanoporous-Crystalline Phases. Macromolecules, 2018, 51, 6138-6148.	2.2	24
31	Influence of aggregate size on photoactivity of N-doped TiO2 particles in aqueous suspensions under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 191-197.	2.0	22
32	Characterization of Syndiotactic Polystyrene Nanofilms by PMâ€ i RRAS Spectroscopy. Macromolecular Symposia, 2016, 359, 24-31.	0.4	0
33	Nanoporous Semicrystalline Syndiotactic Polystyrene with Sulfonated Amorphous Phase, for a Fast and Efficient Removal of VOC Pollutant Traces From Water. Macromolecular Symposia, 2016, 359, 16-23.	0.4	1
34	Nanoporous Crystalline Polymer Materials for Environmental Applications. Macromolecular Symposia, 2016, 369, 19-25.	0.4	6
35	Nanoporous-crystalline poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) aerogels. Polymer, 2016, 105, 96-103.	1.8	36
36	Microporous-crystalline microfibers by eco-friendly guests: An efficient tool for sorption of volatile organic pollutants. Microporous and Mesoporous Materials, 2016, 232, 205-210.	2.2	22

#	Article	IF	CITATIONS
37	Monolithic Polymeric Aerogels with VOCs Sorbent Nanoporous Crystalline and Water Sorbent Amorphous Phases. ACS Applied Materials & Interfaces, 2015, 7, 1318-1326.	4.0	28
38	$\hat{I}\mu$ Form Gels and Aerogels of Syndiotactic Polystyrene. Macromolecules, 2015, 48, 1187-1193.	2.2	23
39	Nanoporous triclinic \hat{l} modification of syndiotactic polystyrene. Polymer, 2015, 63, 230-236.	1.8	39
40	Crystalline Nanoporous Materials Based on Poly(2,6â€dimethylâ€1,4â€phenylene)oxide. Macromolecular Symposia, 2014, 335, 70-77.	0.4	0
41	Rayleigh scattering by graphene-oxide in syndiotactic polystyrene aerogels. Carbon, 2014, 77, 896-905.	5.4	22
42	Solubility and diffusivity of low molecular weight compounds in semi-crystalline poly-(2,6-dimethyl-1,4-phenylene)oxide: The role of the crystalline phase. Journal of Membrane Science, 2013, 443, 100-106.	4.1	39
43	Monolithic Aerogels Based on Poly(2,6-diphenyl-1,4-phenylene oxide) and Syndiotactic Polystyrene. ACS Applied Materials & Interfaces, 2013, 5, 5493-5499.	4.0	13
44	Thermal Stability of Nanoporous Crystalline and Amorphous Phases of Poly(2,6-dimethyl-1,4-phenylene) Oxide. Macromolecules, 2013, 46, 449-454.	2.2	50
45	Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide. Frontiers in Chemistry, 2013, 1, 28.	1.8	16
46	Monolithic Nanoporous Crystalline Aerogels. Macromolecular Rapid Communications, 2013, 34, 1194-1207.	2.0	61
47	A chiral co-crystalline form of poly(2,6-dimethyl-1,4-phenylene)oxide (PPO). Journal of Materials Chemistry, 2012, 22, 11672.	6.7	40
48	Gas Sorption and Diffusion in Amorphous and Semicrystalline Nanoporous Poly(2,6-dimethyl-1,4-phenylene)oxide. Macromolecules, 2012, 45, 3604-3615.	2.2	66
49	Monolithic nanoporous–crystalline aerogels based on PPO. RSC Advances, 2012, 2, 12011.	1.7	40
50	Advanced materials based on polymer cocrystalline forms. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 305-322.	2.4	108
51	Nanoporous Crystalline Phases of Poly(2,6-Dimethyl-1,4-phenylene)oxide. Chemistry of Materials, 2011, 23, 3195-3200.	3.2	81
52	Aerogels and Polymorphism of Isotactic Poly(4-methyl-pentene-1). ACS Applied Materials & Interfaces, 2011, 3, 969-977.	4.0	49
53	Ferroelectric co-crystalline polymers. Journal of Materials Chemistry, 2011, 21, 19074.	6.7	39
54	Sorption of Pollutant Traces by Nanoporous Crystalline Aerogels: Visualization by a Dye. Macromolecular Symposia, 2011, 303, 37-41.	0.4	3

#	Article	IF	CITATIONS
55	Porous Materials from Polyvinylidene Fluoride/Solvent Molecular Compounds. Soft Materials, 2011, 9, 280-294.	0.8	16
56	Structure and Sorption Properties of Syndiotactic Polystyrene Aerogels. ACS Symposium Series, 2010, , 131-147.	0.5	3
57	Monoclinic and Triclinic δ-Clathrates of Syndiotactic Polystyrene. Macromolecules, 2010, 43, 8549-8558.	2.2	78
58	Channel Clathrate of Syndiotactic Polystyrene with <i>p</i> -nitroaniline. Macromolecules, 2010, 43, 1455-1466.	2.2	80
59	Hydrogen Adsorption by δ and ε Crystalline Phases of Syndiotactic Polystyrene Aerogels. Macromolecules, 2010, 43, 8594-8601.	2.2	42
60	Storage of hydrogen as a guest of a nanoporous polymeric crystalline phase. Physical Chemistry Chemical Physics, 2010, 12, 5369.	1.3	30
61	Syndiotatic Polystyrene Aerogels with β, γ, and ε Crystalline Phases. Chemistry of Materials, 2009, 21, 1028-1034.	3.2	94
62	Dipolar guest orientation in polymer co-crystals and macroscopic films. CrystEngComm, 2009, 11, 2381.	1.3	39
63	Syndiotactic Polystyrene Aerogels: Adsorption in Amorphous Pores and Absorption in Crystalline Nanocavities. Chemistry of Materials, 2008, 20, 577-582.	3.2	96
64	Influence of Supercritical Carbon Dioxide Extraction Temperature on the Crystalline Structure and the Morphology of Syndiotactic Polystyrene Aerogels. Macromolecular Symposia, 2008, 273, 135-138.	0.4	2
65	Structural Organization and Properties of Syndiotactic Polystyrene Gels. Macromolecular Symposia, 2007, 251, 1-10.	0.4	4
66	New Host Polymeric Framework and Related Polar Guest Cocrystals. Chemistry of Materials, 2007, 19, 3864-3866.	3.2	102
67	Syndiotactic Polystyrene Clathrates with Polar Guest Molecules. Chemistry of Materials, 2007, 19, 3302-3308.	3.2	65
68	Syndiotactic Polystyrene Physical Gels:Â Guest Influence on Structural Order in Molecular Complex Domains and Gel Transparency. Macromolecules, 2006, 39, 7578-7582.	2.2	38
69	Control of Crystal Size and Orientation in Polymer Films by Hostâ	2.2	32
70	Thermoplastic Molecular Sieves: New Polymeric Materials for Molecular Packaging. ACS Symposium Series, 2005, , 171-186.	0.5	0
71	Crystalline Organization in Syndiotactic Polystyrene Gels and Aerogels. Macromolecular Symposia, 2005, 222, 247-252.	0.4	0
72	Thermal Behavior of Syndiotactic Polystyrene/1,2â€Dichloroethane Gels and Stoichiometry of Polymerâ€Solvent Compounds. Soft Materials, 2004, 2, 47-56.	0.8	6

#	Article	IF	CITATIONS
73	Evaluation of the Amount and Composition of the Polymer-Rich and Polymer-Poor Phases of Syndiotactic Polystyrene Gels with Binary Solvent Mixtures. Macromolecules, 2003, 36, 5742-5750.	2.2	28
74	Physical Gelation of Syndiotactic Polystyrene in the Presence of Large Molar Volume Solvents Induced by Volatile Guests of Clathrate Phases. Macromolecules, 2003, 36, 1713-1716.	2.2	37
75	Clathrate Phase in Syndiotactic Polystyrene Gels. Macromolecules, 2002, 35, 2243-2251.	2.2	76
76	Thermoreversible gelation of syndiotactic polystyrene in toluene and chloroform. Polymer, 1997, 38, 4193-4199.	1.8	98
77	On the definition of thermoreversible gels: the case of syndiotactic polystyrene. Polymer, 1994, 35, 4243-4246.	1.8	128
78	Isolated and aggregated carvacrol guest molecules in cocrystalline poly(2,6-dimethyl-1,4-phenylene)oxide films. Polymer Journal, 0, , .	1.3	8