Susana K Checa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7960950/publications.pdf

Version: 2024-02-01

567281 752698 21 754 15 20 citations h-index g-index papers 21 21 21 771 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of Copper Homeostasis and Virulence in Salmonella. Frontiers in Microbiology, 2022, 13, 823176.	3.5	3
2	Copper Handling in the Salmonella Cell Envelope and Its Impact on Virulence. Trends in Microbiology, 2021, 29, 384-387.	7.7	8
3	Engineering of a Au-sensor to develop a Hg-specific, sensitive and robust whole-cell biosensor for on-site water monitoring. Chemical Communications, 2020, 56, 6590-6593.	4.1	8
4	CpxR/CpxA Controls <i>scsABCD</i> Transcription To Counteract Copper and Oxidative Stress in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2018, 200, .	2.2	41
5	The CpxR/CpxA system contributes to <i>Salmonella</i> goldâ€resistance by controlling the GolSâ€dependent <i>gesABC</i> transcription. Environmental Microbiology, 2017, 19, 4035-4044.	3.8	13
6	Bacterial Copper Resistance and Virulence. , 2015, , 1-19.		9
7	A Single Serine Residue Determines Selectivity to Monovalent Metal lons in Metalloregulators of the MerR Family. Journal of Bacteriology, 2015, 197, 1606-1613.	2.2	40
8	A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions. Chemical Communications, 2015, 51, 5917-5920.	4.1	52
9	Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess. Microbiology (United Kingdom), 2014, 160, 1659-1669.	1.8	27
10	Dissecting the Metal Selectivity of MerR Monovalent Metal Ion Sensors in Salmonella. Journal of Bacteriology, 2013, 195, 3084-3092.	2.2	20
11	Protein Signatures That Promote Operator Selectivity among Paralog MerR Monovalent Metal Ion Regulators. Journal of Biological Chemistry, 2013, 288, 20510-20519.	3.4	19
12	Bacterial signaling systems as platforms for rational design of new generations of biosensors. Current Opinion in Biotechnology, 2012, 23, 766-772.	6.6	49
13	Bacterial gold sensing and resistance. BioMetals, 2011, 24, 419-427.	4.1	29
14	Selective detection of gold using genetically engineered bacterial reporters. Biotechnology and Bioengineering, 2011, 108, 2553-2560.	3.3	32
15	Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Molecular Microbiology, 2010, 78, 853-865.	2.5	36
16	Downregulation of RpoN-controlled genes protects <i>Salmonella</i> cells from killing by the cationic antimicrobial peptide polymyxin B. FEMS Microbiology Letters, 2009, 291, 73-79.	1.8	15
17	Dissecting the Salmonella response to copper. Microbiology (United Kingdom), 2007, 153, 2989-2997.	1.8	88
18	Bacterial sensing of and resistance to gold salts. Molecular Microbiology, 2007, 63, 1307-1318.	2.5	118

Susana K Checa

#	Article	IF	CITATIONS
19	GolS controls the response to gold by the hierarchical induction of <i>Salmonella</i> â€specific genes that include a CBA effluxâ€coding operon. Molecular Microbiology, 2007, 66, 814-825.	2.5	106
20	Cooperation of the DnaK and GroE chaperone systems in the folding pathway of plant ferredoxin-NADP+ reductase expressed in Escherichia coli. FEBS Journal, 1998, 251, 724-728.	0.2	16
21	The 70-kDa Heat-Shock Protein/DnaK Chaperone System is Required for the Productive Folding of Ribulose-Bisphosphate Carboxylase Subunits in Escherichia Coli. FEBS Journal, 1997, 248, 848-855.	0.2	25