Jiexin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7960933/publications.pdf Version: 2024-02-01

ΙΓΕΥΙΝ ΖΗΙ

#	Article	IF	CITATIONS
1	Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal–Oxygen Covalency Enables Efficient Oxygen Evolution. Energy and Environmental Materials, 2022, 5, 231-237.	12.8	28
2	Activating Inert Sites in Cobalt Silicate Hydroxides for Oxygen Evolution through Atomically Doping. Energy and Environmental Materials, 2022, 5, 655-661.	12.8	21
3	Improved zinc-ion storage performance of the metal-free organic anode by the effect of binder. Chemical Engineering Journal, 2022, 428, 131092.	12.7	28
4	Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO ₂ Reduction to Hydrocarbons**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	61
5	MOF Encapsulating Nâ€Heterocyclic Carbeneâ€Ligated Copper Singleâ€Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angewandte Chemie, 2022, 134, e202114450.	2.0	15
6	MOF Encapsulating Nâ€Heterocyclic Carbene‣igated Copper Singleâ€Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	170
7	Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nature Catalysis, 2022, 5, 300-310.	34.4	175
8	Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO ₂ Methanation. Journal of the American Chemical Society, 2022, 144, 12807-12815.	13.7	74
9	Ni/Fe based bimetallic coordination complexes with rich active sites for efficient oxygen evolution reaction. Chemical Engineering Journal, 2021, 405, 126959.	12.7	38
10	Regulating Latticeâ€Waterâ€Adsorbed Ions to Optimize Intercalation Potential in 3D Prussian Blue Based Multiâ€Ion Microbattery. Small, 2021, 17, e2007791.	10.0	12
11	Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. Advanced Materials, 2021, 33, e2007344.	21.0	198
12	Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small, 2021, 17, e2100629.	10.0	10
13	Electrocatalytic Reactions for Converting CO ₂ to Valueâ€Added Products. Small Science, 2021, 1, 2100043.	9.9	66
14	Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO ₂ Methanation. Nano Letters, 2021, 21, 7325-7331.	9.1	133
15	Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87, 106153.	16.0	76
16	Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. Journal of Colloid and Interface Science, 2021, 601, 378-384.	9.4	27
17	Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction. Chemical Engineering Journal, 2021, 426, 131867.	12.7	24
18	MOF derived bimetallic CuBi catalysts with ultra-wide potential window for high-efficient electrochemical reduction of CO2 to formate. Applied Catalysis B: Environmental, 2021, 298, 120571.	20.2	55

JIEXIN ZHU

#	Article	IF	CITATIONS
19	Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy and Environmental Science, 2021, 14, 1016-1028.	30.8	130
20	Liquid Phaseâ€Induced Solid Solution Phase Mechanisms for Highly Stable and Ultrafast Energy Storage. Advanced Energy Materials, 2021, 11, 2102342.	19.5	6
21	Bismuth Oxides with Enhanced Bismuth–Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catalysis, 2020, 10, 743-750.	11.2	234
22	Confining Ultrafine MoO ₂ in a Carbon Matrix Enables Hybrid Li Ion and Li Metal Storage. ACS Applied Materials & Interfaces, 2020, 12, 40648-40654.	8.0	40
23	Metal–organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. Journal of Materials Chemistry A, 2020, 8, 12418-12423.	10.3	38
24	Highly Selective Carbon Dioxide Electroreduction on Structure-Evolved Copper Perovskite Oxide toward Methane Production. ACS Catalysis, 2020, 10, 4640-4646.	11.2	112
25	Micrometer‣ized Porous Fe ₂ N/C Bulk for Highâ€Arealâ€Capacity and Stable Lithium Storage. Small, 2019, 15, e1803572.	10.0	31
26	Carboxyl functionalized carbon incorporation of stacked ultrathin NiO nanosheets: topological construction and superior lithium storage. Nanoscale, 2019, 11, 7588-7594.	5.6	17
27	High Energy Density Micro-Supercapacitor Based on a Three-Dimensional Bicontinuous Porous Carbon with Interconnected Hierarchical Pores. ACS Applied Materials & Interfaces, 2019, 11, 948-956.	8.0	42
28	Ultrafine Nickelâ€Nanoparticleâ€Enabled SiO ₂ Hierarchical Hollow Spheres for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2018, 28, 1704561.	14.9	193
29	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	21.0	289
30	ZnSe Microsphere/Multiwalled Carbon Nanotube Composites as High-Rate and Long-Life Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19626-19632.	8.0	111
31	Copper silicate nanotubes anchored on reduced graphene oxide for long-life lithium-ion battery. Energy Storage Materials, 2017, 7, 152-156.	18.0	67
32	Porous and Low-Crystalline Manganese Silicate Hollow Spheres Wired by Graphene Oxide for High-Performance Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2017, 9, 24584-24590.	8.0	79
33	Facile Synthesis of Bi ₂ S ₃ @SiO ₂ Core-Shell Microwires as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A6110-A6115.	2.9	26