Asano Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7960727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	5.6	913
2	Developmental Link between Sex and Nutrition; doublesex Regulates Sex-Specific Mandible Growth via Juvenile Hormone Signaling in Stag Beetles. PLoS Genetics, 2014, 10, e1004098.	3.5	138
3	A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science, 2019, 364, 886-889.	12.6	109
4	Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex. BMC Developmental Biology, 2010, 10, 45.	2.1	107
5	Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Molecular Biology, 2010, 19, 63-73.	2.0	84
6	Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. Insect Molecular Biology, 2012, 21, 49-60.	2.0	66
7	Sex Differences in Recombination in Sticklebacks. G3: Genes, Genomes, Genetics, 2018, 8, 1971-1983.	1.8	63
8	The evolutionary ecology of fattyâ€acid variation: Implications for consumer adaptation and diversification. Ecology Letters, 2021, 24, 1709-1731.	6.4	53
9	Genetic basis for variation in salinity tolerance between stickleback ecotypes. Molecular Ecology, 2017, 26, 304-319.	3.9	47
10	Morphological and histological examination of polyphenic wing formation in the pea aphid Acyrthosiphon pisum (Hemiptera, Hexapoda). Zoomorphology, 2008, 127, 121-133.	0.8	43
11	Ovarian development and insulin-signaling pathways during reproductive differentiation in the queenless ponerine ant Diacamma sp Journal of Insect Physiology, 2010, 56, 288-295.	2.0	40
12	Physiological and genetic basis for variation in migratory behavior in the three-spined stickleback, Gasterosteus aculeatus. Ichthyological Research, 2012, 59, 293-303.	0.8	35
13	Different contributions of local- and distant-regulatory changes to transcriptome divergence between stickleback ecotypes. Evolution; International Journal of Organic Evolution, 2017, 71, 565-581.	2.3	34
14	Juvenile hormone titer and wing-morph differentiation in the vetch aphid Megoura crassicauda. Journal of Insect Physiology, 2013, 59, 444-449.	2.0	29
15	Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback. Journal of Evolutionary Biology, 2013, 26, 1417-1430.	1.7	24
16	Differential regulations of wing and ovarian development and heterochronic changes of embryogenesis between morphs in wing polyphenism of the vetch aphid. Evolution & Development, 2009, 11, 680-688.	2.0	20
17	Transduction of highâ€density signals across generations in aphid wing polyphenism. Physiological Entomology, 2013, 38, 150-156.	1.5	19
18	Parallel transcriptome evolution in stream threespine sticklebacks. Development Growth and Differentiation, 2019, 61, 104-113.	1.5	19

ASANO ISHIKAWA

#	Article	lF	CITATIONS
19	Gene expression changes during caste-specific neuronal development in the damp-wood termite Hodotermopsis sjostedti. BMC Genomics, 2010, 11, 314.	2.8	17
20	Shifts in morphology and diet of nonâ€native sticklebacks introduced into Japanese crater lakes. Ecology and Evolution, 2012, 2, 1083-1098.	1.9	16
21	The function of appendage patterning genes in mandible development of the sexually dimorphic stag beetle. Developmental Biology, 2017, 422, 24-32.	2.0	15
22	Phylogenomics reveals habitat-associated body shape divergence in Oryzias woworae species group (Teleostei: Adrianichthyidae). Molecular Phylogenetics and Evolution, 2018, 118, 194-203.	2.7	15
23	Diversity in reproductive seasonality in the three-spined stickleback, <i>Gasterosteus aculeatus</i> . Journal of Experimental Biology, 2020, 223, .	1.7	15
24	Patterns of genomic divergence and introgression between Japanese stickleback species with overlapping breeding habitats. Journal of Evolutionary Biology, 2021, 34, 114-127.	1.7	15
25	Screening of Upregulated Genes Induced by High Density in the Vetch Aphid <i>Megoura crassicauda</i> . Journal of Experimental Zoology, 2012, 317, 194-203.	1.2	14
26	Male-specific flight apparatus development in Acyrthosiphon pisum (Aphididae, Hemiptera, Insecta): comparison with female wing polyphenism. Zoomorphology, 2012, 131, 197-207.	0.8	13
27	Functional divergence of a heterochromatinâ€binding protein during stickleback speciation. Molecular Ecology, 2019, 28, 1563-1578.	3.9	12
28	Relaxin-related gene expression differs between anadromous and stream-resident stickleback (Gasterosteus aculeatus) following seawater transfer. General and Comparative Endocrinology, 2014, 205, 197-206.	1.8	11
29	Copy number variation of a fatty acid desaturase gene <i>Fads2</i> associated with ecological divergence in freshwater stickleback populations. Biology Letters, 2021, 17, 20210204.	2.3	10
30	Multiple waves of freshwater colonization of the three-spined stickleback in the Japanese Archipelago. BMC Evolutionary Biology, 2020, 20, 143.	3.2	6
31	Differences in the contributions of sex linkage and androgen regulation to sexâ€biased gene expression in juvenile and adult sticklebacks. Journal of Evolutionary Biology, 2020, 33, 1129-1138.	1.7	6
32	Integrated Genomics Approaches in Evolutionary and Ecological Endocrinology. Advances in Experimental Medicine and Biology, 2014, 781, 299-319.	1.6	6
33	Convergent copy number increase of genes associated with freshwater colonization in fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	6
34	Lateralized expression of left-right axis formation genes is shared by adult brains of lefty and righty scale-eating cichlids. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2018, 28, 99-106.	1.0	5
35	Ecological Genetics of Thyroid Hormone Physiology in Humans and Wild Animals. , 2012, , .		3
36	Genetic basis of speciation and adaptation: from loci to causative mutations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	3

#	Article	IF	CITATIONS
37	Construction of a chromosome-level Japanese stickleback species genome using ultra-dense linkage analysis with single-cell sperm sequencing. NAR Genomics and Bioinformatics, 2022, 4, lqac026.	3.2	1
38	Thoughts on the Future of Evolutionary Biology and Society. Trends in the Sciences, 2021, 26, 3_94-3_99.	0.0	0
39	Genetic basis for variation in the number of cephalic pores in a hybrid zone between closely related species of goby, <i>Gymnogobius breunigii</i> and <i>Gymnogobius castaneus</i> . Biological Journal of the Linnean Society, 2021, 133, 143-154.	1.6	0