Sayed Mahmood Rabiee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7960673/publications.pdf

Version: 2024-02-01

87 papers 1,661 citations

393982 19 h-index 315357 38 g-index

90 all docs 90 docs citations

90 times ranked 2235 citing authors

#	Article	IF	CITATIONS
1	Effect of ion substitution on properties of bioactive glasses: A review. Ceramics International, 2015, 41, 7241-7251.	2.3	216
2	Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites Part B: Engineering, 2012, 43, 1881-1886.	5.9	174
3	Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceramics International, 2010, 36, 291-297.	2.3	155
4	Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts. Construction and Building Materials, 2015, 95, 296-311.	3 . 2	82
5	Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Carbohydrate Polymers, 2018, 190, 281-294.	5.1	71
6	Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	51
7	Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohydrate Polymers, 2017, 157, 1261-1271.	5.1	50
8	Fabrication and characterization of dextran/nanocrystalline \hat{I}^2 -tricalcium phosphate nanocomposite hydrogel scaffolds. International Journal of Biological Macromolecules, 2020, 148, 434-448.	3 . 6	46
9	Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: a preliminary study. Microscopy Research and Technique, 2017, 80, 599-607.	1.2	41
10	Synthesis of nano-bioactive glass–ceramic powders and its in vitro bioactivity study in bovine serum albumin protein. Journal of Molecular Structure, 2011, 998, 37-41.	1.8	36
11	Synthesis and characterization of hydroxyapatite cement. Journal of Molecular Structure, 2010, 969, 172-175.	1.8	35
12	Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2019, 29, 931-940.	1.7	35
13	Antibacterial activity of silver photodeposited nepheline thin film coatings. Ceramics International, 2012, 38, 5445-5451.	2.3	33
14	Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate. Journal of Biomedical Materials Research - Part A, 2011, 98A, 257-267.	2.1	28
15	Biocompatibility and Mineralization Activity of Fresh or Set White Mineral Trioxide Aggregate, Biomimetic Carbonated Apatite, and Synthetic Hydroxyapatite. Journal of Endodontics, 2010, 36, 1036-1041.	1.4	26
16	Design and Analysis of Porous Functionally Graded Femoral Prostheses with Improved Stress Shielding. Designs, 2020, 4, 12.	1.3	23
17	Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application. Materials Science and Engineering C, 2017, 80, 631-641.	3.8	22
18	Three-dimensional laser drilling of polymethyl methacrylate (PMMA) scaffold used for bone regeneration. International Journal of Advanced Manufacturing Technology, 2016, 84, 2649-2657.	1.5	21

#	Article	IF	Citations
19	The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets. Scanning, 2015, 37, 294-299.	0.7	20
20	Layered manufacturing of a three-dimensional polymethyl methacrylate (PMMA) scaffold used for bone regeneration. Materials Technology, 2019, 34, 167-177.	1.5	20
21	Effects of prior ECAP process on the dynamic impact behaviors of hypereutectic Al-Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139902.	2.6	19
22	The fabrication of nanocomposites via calcium phosphate formation on gelatin–chitosan network and the gelatin influence on the properties of biphasic composites. Materials Science and Engineering C, 2013, 33, 370-375.	3.8	18
23	The effect of bioactive glass nanoparticles on polycaprolactone/chitosan scaffold: Melting enthalpy and cell viability. Journal of Bioactive and Compatible Polymers, 2019, 34, 97-111.	0.8	18
24	Study of biodegradable ceramic bone graft substitute. Advances in Applied Ceramics, 2008, 107, 199-202.	0.6	17
25	Mechanical strength and setting times estimation of hydroxyapatite cement by using neural network. Materials & Design, 2010, 31, 2585-2591.	5.1	17
26	Mechanical behavior of a new biphasic calcium phosphate bone graft. Biotechnology and Bioprocess Engineering, 2008, 13, 204-209.	1.4	16
27	The modified Mori-Tanaka scheme for the prediction of the effective elastic properties of highly porous ceramics. Ceramics International, 2018, 44, 16489-16497.	2.3	16
28	A novel modification for polymer sponge method to fabricate the highly porous composite bone scaffolds with large aspect ratio suitable for repairing critical-sized bone defects. Vacuum, 2020, 176, 109316.	1.6	16
29	EBSD study of the microstructure and texture evolution in an Al–Si–Cu alloy processed by route A ECAP. Journal of Alloys and Compounds, 2021, 858, 157651.	2.8	16
30	Preparation, mechanical properties, and <i>in vitro</i> biocompatibility of novel nanocomposites based on polyhexamethylene carbonate fumarate and nanohydroxyapatite. Polymers for Advanced Technologies, 2011, 22, 605-611.	1.6	15
31	Effect of hot rolling on microstructure, crystallographic texture, and hardness of AZ31 alloy. Materials Chemistry and Physics, 2021, 273, 125130.	2.0	15
32	Thermal stability of nanocrystalline Mg-based alloys prepared via mechanical alloying. Transactions of Nonferrous Metals Society of China, 2016, 26, 398-405.	1.7	14
33	In vitro apatite formation of calcium phosphate composite synthesized from fish bone. International Journal of Applied Ceramic Technology, 2019, 16, 1969-1978.	1.1	13
34	Texture and microstructure evolution of A390 aluminum alloy during ECAP. Materials Research Express, 2019, 6, 076536.	0.8	13
35	Prediction of the Setting Properties of Calcium Phosphate Bone Cement. Computational Intelligence and Neuroscience, 2012, 2012, 1-8.	1.1	12
36	Electrospun Poly-ε-Caprolactone (PCL)/Dicalcium Phosphate Dihydrate (DCPD) Composite Scaffold for Tissue Engineering Application. Molecular Biotechnology, 2019, 61, 345-354.	1.3	12

#	Article	IF	CITATIONS
37	Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride. Bulletin of Materials Science, 2013, 36, 171-174.	0.8	11
38	Fabrication and physicochemical characterization of a novel magnetic nanocomposite scaffold: Electromagnetic field effect on biological properties. Materials Science and Engineering C, 2020, 116, 111222.	3.8	11
39	Synthesis and Characterization of Amorphous Nanoâ€Alumina Powders with High Surface Area for Biodiesel Production. Chemical Engineering and Technology, 2013, 36, 1708-1712.	0.9	10
40	Histopathological, Histomorphometrical, and Radiographical Evaluation of Injectable Glass-Ceramic-Chitosan Nanocomposite in Bone Reconstruction of Rat. International Journal of Biomaterials, 2015, 2015, 1-8.	1.1	10
41	Effect of route BC-ECAP on microstructural evolution and mechanical properties of Al–Si–Cu alloy. Journal of Materials Science, 2021, 56, 3535-3550.	1.7	10
42	In-vitro formation and growth kinetics of apatite on a new light-cured composite calcium phosphate cement. Ceramics International, 2018, 44, 15317-15322.	2.3	9
43	Association of a synthetic bone graft and bone marrow cells as a composite biomaterial. Biotechnology and Bioprocess Engineering, 2009, 14, 1-5.	1.4	8
44	Effect of Zirconia Concentration on the Growth of Nanowires in Bioactive Glass–Ceramic Coatings. International Journal of Applied Ceramic Technology, 2013, 10, 33-39.	1.1	8
45	Application of self-learning evolutionary algorithm for optimal design of a porous polymethylmethacrylate scaffold fabricated by laser drilling process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2013, 227, 211-224.	1.4	8
46	Structural Behavior and In Vitro Bioactivity Evaluation of Sol-Gel Derived Glass-Ceramics Based on SiO2- CaO- P2O5- ZnO System. Silicon, 2018, 10, 67-75.	1.8	8
47	Use of rapid microwave sintering technique for the processing of magnesium-hydroxyapatite composites. Ceramics International, 2021, 47, 13023-13034.	2.3	8
48	Characterization of magnesium-hydroxyapatite functionally graded composites prepared by rapid microwave sintering technique. Ceramics International, 2022, 48, 12641-12653.	2.3	8
49	Evaluating Initial Content of the Slurry and Cooling Rate on the Microstructural and Mechanical Characteristics of Freeze Casted Hydroxyapatite Macroporous Scaffolds. Key Engineering Materials, 0, 529-530, 147-152.	0.4	7
50	Histopathological evaluation of potential impact of \hat{i}^2 -tricalcium phosphate (HA+ \hat{i}^2 -TCP) granules on healing of segmental femur bone defect. Bratislava Medical Journal, 2015, 116, 30-34.	0.4	7
51	Direct Impregnation of MgO Nanoparticles in 58S Bioactive Glass: Bioactivity Evaluation and Antibacterial Activity. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 885-898.	0.7	7
52	Novel calcium phosphate coated calcium silicate-based cement: <i>in vitro</i> evaluation. Biomedical Materials (Bristol), 2020, 15, 035008.	1.7	6
53	Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration. Progress in Biomaterials, 2021, 10, 271-280.	1.8	6
54	Effect of Alumina on Microstructure and Compressive Strength of a Porous Silicated Hydroxyapatite. Journal of Applied Biomaterials and Functional Materials, 2014, 12, 102-106.	0.7	5

#	Article	IF	CITATIONS
55	Three-dimensional printing of truss-like structure for use in scaffold: Experimental, numerical, and analytical analyses. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 3133-3142.	1.1	5
56	Influence of Crystallographic Texture on the Corrosion Product Morphology and Corrosion Rate of AZ31 Plate in Simulated Body Fluid. Journal of Materials Engineering and Performance, 2020, 29, 3824-3830.	1.2	5
57	In-vitro evaluation and antibacterial activity of ZnO nanoparticles deposited on hydroxyapatite tablets by RF magnetron sputtering. Materials Today Communications, 2021, 28, 102520.	0.9	5
58	Microstructural and mechanical properties of Al-Al _{20_{3 composites focus on experimental techniques. International Journal of Microstructure and Materials Properties, 2016, 11, 383.}}	0.1	5
59	Microstructural and mechanical properties of Al-Al<SUB align="right">2O<SUB align="right">3 composites focus on experimental techniques. International Journal of Microstructure and Materials Properties, 2016, 11 , 383 .	0.1	4
60	Effect of CO ₂ laser power intensity on the surface morphology and friction behavior of alumina ceramic brackets. Microscopy Research and Technique, 2017, 80, 923-929.	1.2	4
61	Nanostructured akermanite glass-ceramic coating on Ti6Al4V for orthopedic applications. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001879381.	0.7	4
62	Influence of Thermomechanical Processing on the Microstructure and Tensile Behavior of Solution-Treated Al-18%Si-4.5%Cu Alloy. Journal of Materials Engineering and Performance, 2021, 30, 4651-4668.	1.2	4
63	Prediction of the effective elastic moduli of porous bone scaffolds: Analytical and computational studies. International Journal of Modern Physics C, 2022, 33, .	0.8	4
64	Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer's solution with BSA. Chemical Industry and Chemical Engineering Quarterly, 2013, 19, 231-239.	0.4	3
65	Characterization of porous Ti-bioglass composite produced by mechanical milling and space holder sintering. Rare Metals, 2015, 34, 638-644.	3.6	3
66	Investigation of hydroxyapatite dicalcium phosphate scaffold properties using a Lamarckian immune neural network. International Journal of Computer Applications in Technology, 2016, 53, 323.	0.3	3
67	Nanoscale Multi-Layer Thin Film Fabricated by Cathodic Arc Evaporation (CAE) Method. Journal of Superhard Materials, 2020, 42, 78-89.	0.5	3
68	Titanium Dioxide Nanotubes Incorporated Bioactive Glass Nanocomposites: Synthesis, Characterization, Bioactivity Evaluation and Drug Loading. International Journal of Engineering, Transactions A: Basics, 2021, 34, .	0.5	3
69	Textural Evaluation of Al–Si–Cu Alloy Processed by Route BC-ECAP. Metals and Materials International, 2021, 27, 2756-2772.	1.8	3
70	Novel Methods for Adding Metal Oxides Nanoparticles to Bioactive Glass 58S Matrix: A Characterization and Bioactivity Evaluation Study. Silicon, 0 , 1 .	1.8	3
71	Optimization of composite bone scaffolds prepared by a new modified foam replica technique. Materials Today Communications, 2022, 31, 103293.	0.9	3
72	The Release Behavior, Biocompatibility and Physical Properties of Ald-loaded Strontium Doped Calcium Phosphate Cement. Journal of Bionic Engineering, 2020, 17, 1209-1223.	2.7	2

#	Article	IF	CITATIONS
73	Experimental and numerical investigation of polymethyl methacrylate scaffolds for bone tissue engineering. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 586-594.	0.7	2
74	Bioactivity evaluation of printable calcium polyphosphate/alginoplast cement for bone tissue engineering; In vitro study. Bioprinting, 2022, 27, e00210.	2.9	2
75	Synthesises, characterization and comparative study of bone regeneration on nano hydroxyapatite and hydroxyapatite/chitosan nanocomposite in rat. , $2011, \dots$		1
76	Calcium Phosphate/Etidronate Disodium Biocement: Etidronate, Retarder or Accelerator. Nano Biomedicine and Engineering, 2014, 6, .	0.3	1
77	A Freestanding Sol-Gel Technique for Growth of Nanowire Arrays in SiO 2 -CaO-P 2 O 5 -ZrO 2 System. Silicon, 2016, 8, 233-237.	1.8	1
78	Effect of Route BC Equal-Channel Angular Pressing on the Microstructure, Microtexture, and Homogeneity of Al-18%Si-4.5%Cu Alloy. Journal of Materials Engineering and Performance, 2021, 30, 1577-1601.	1.2	1
79	Corrosion Behavior of TiN/CrN Nanoscale Multi-layered Coating in Ringer's Solution. International Journal of Engineering Transactions B: Applications, 2020, 33, .	0.6	1
80	Evaluation of Antibacterial Effects of Silver-Coated Stainless Steel Orthodontic Brackets. Journal of Dentistry of Tehran University of Medical Sciences, 2016, 13, 49-54.	0.4	1
81	Influence of calcination parametersÂon the microstructure, magnetic and hyperthermia properties of Zn-Co ferrite nanoparticles. Journal of Electroceramics, 2022, 48, 157-168.	0.8	1
82	Porous tricalcium phosphate scaffold for bone substitute., 2011,,.		0
83	Influence of zirconia on microstructure of bioactive glass coated on stainless steel for biomedical application. , 2012, , .		0
84	Mechanical Properties Improvement of Porous Titanium-Bioglass Nanocomposites by Mechanical Alloying. Advanced Materials Research, 0, 829, 319-323.	0.3	0
85	Texture–Microstructure Correlation in Hot-Rolled AZ31. Transactions of the Indian Institute of Metals, 2019, 72, 1775-1781.	0.7	0
86	Clinical, Histological and Histomorphometric Evaluation of Effects of Silver Ion Coating of Orthodontic Fixed Retainers on Gingival Health in Rabbits. Biomedical and Pharmacology Journal, 2017, 10, 525-533.	0.2	0
87	Exploring the Dependence of Magnetic and Structural Properties on Co-precipitated Replacement of Zn in CoFe2O4 Nanoparticles. Journal of Electronic Materials, 2022, 51, 2552-2563.	1.0	0