Catherine L Parr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7960224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological strategies of (pl)ants: Towards a worldâ€wide worker economic spectrum for ants. Functional Ecology, 2023, 37, 13-25.	3.6	9
2	Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration. Journal of Applied Ecology, 2022, 59, 1967-1975.	4.0	38
3	Fire ecology for the 21st century: Conserving biodiversity in the age of megafire. Diversity and Distributions, 2022, 28, 350-356.	4.1	6
4	Termites have wider thermal limits to cope with environmental conditions in savannas. Journal of Animal Ecology, 2022, 91, 766-779.	2.8	5
5	The response of ants to climate change. Global Change Biology, 2022, 28, 3188-3205.	9.5	39
6	What do you mean, â€~megafire'?. Global Ecology and Biogeography, 2022, 31, 1906-1922.	5.8	37
7	Drought and fire determine juvenile and adult woody diversity and dominance in a semiâ€arid African savanna. Biotropica, 2022, 54, 1015-1029.	1.6	7
8	Ant colony nest networks adapt to resource disruption. Journal of Animal Ecology, 2021, 90, 143-152.	2.8	14
9	Clarifying Terrestrial Recycling Pathways. Trends in Ecology and Evolution, 2021, 36, 9-11.	8.7	5
10	Carbon flux and forest dynamics: Increased deadwood decomposition in tropical rainforest treeâ€fall canopy gaps. Global Change Biology, 2021, 27, 1601-1613.	9.5	22
11	Geographical variation in ant foraging activity and resource use is driven by climate and net primary productivity. Journal of Biogeography, 2021, 48, 1448-1459.	3.0	16
12	Mammalian herbivore movement into drought refugia has cascading effects on savanna insect communities. Journal of Animal Ecology, 2021, 90, 1753-1763.	2.8	2
13	The effect of fire on ant assemblages does not depend on habitat openness but does select for large, gracile predators. Ecosphere, 2021, 12, e03549.	2.2	4
14	Agricultural expansion in African savannas: effects on diversity and composition of trees and mammals. Biodiversity and Conservation, 2021, 30, 3279-3297.	2.6	8
15	Proximity to forest mediates tradeâ€offs between yields and biodiversity of birds in oil palm smallholdings. Biotropica, 2021, 53, 1498-1509.	1.6	4
16	The impact of invertebrate decomposers on plants and soil. New Phytologist, 2021, 231, 2142-2149.	7.3	41
17	Taxonomic and functional approaches reveal different responses of ant assemblages to land-use changes. Basic and Applied Ecology, 2021, 54, 39-49.	2.7	10
18	A global review of termite sampling methods. Insectes Sociaux, 2021, 68, 3-14.	1.2	9

#	Article	IF	CITATIONS
19	Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient. Journal of Animal Ecology, 2020, 89, 347-359.	2.8	38
20	Droughts Decouple African Savanna Grazers from Their Preferred Forage with Consequences for Grassland Productivity. Ecosystems, 2020, 23, 689-701.	3.4	6
21	Effects of fire frequency on savanna butterfly diversity and composition: A preliminary study. Koedoe, 2020, 62, .	0.9	2
22	Fire and biodiversity in the Anthropocene. Science, 2020, 370, .	12.6	240
23	Woody vegetation damage by the African elephant during severe drought at Pongola Game Reserve, South Africa. African Journal of Ecology, 2020, 58, 658-673.	0.9	9
24	Drought and presence of ants can influence hemiptera in tropicalÂleaf litter. Biotropica, 2020, 52, 221-229.	1.6	4
25	Resistance of mound-building termites to anthropogenic land-use change. Environmental Research Letters, 2020, 15, 094038.	5.2	17
26	Numerically dominant species drive patterns in resource use along a vertical gradient in tropical ant assemblages. Biotropica, 2020, 52, 101-112.	1.6	10
27	Mineral analysis reveals extreme manganese concentrations in wild harvested and commercially available edible termites. Scientific Reports, 2020, 10, 6146.	3.3	10
28	Termite mounds create heterogeneity in invertebrate communities across a savanna rainfall gradient. Biodiversity and Conservation, 2020, 29, 1427-1441.	2.6	7
29	DNA barcoding reveals incorrect labelling of insects sold as food in the UK. PeerJ, 2020, 8, e8496.	2.0	15
30	Anthropogenic modifications to fire regimes in the wider Serengetiâ€Mara ecosystem. Global Change Biology, 2019, 25, 3406-3423.	9.5	38
31	The costs and benefits of decentralization and centralization of ant colonies. Behavioral Ecology, 2019, 30, 1700-1706.	2.2	5
32	Comment on $\hat{a} \in \infty$ The global tree restoration potential $\hat{a} \in \mathbf{S}$ Science, 2019, 366, .	12.6	185
33	Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Global Change Biology, 2019, 25, 2162-2173.	9.5	16
34	Dissimilar effects of human and elephant disturbance on woodland structure and functional bird diversity in the mopane woodlands of Zambia. Landscape Ecology, 2019, 34, 357-371.	4.2	8
35	Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science, 2019, 363, 1424-1428.	12.6	160
36	Termites can decompose more than half of deadwood in tropical rainforest. Current Biology, 2019, 29, R118-R119.	3.9	55

#	Article	IF	CITATIONS
37	Animal movements in fireâ€prone landscapes. Biological Reviews, 2019, 94, 981-998.	10.4	100
38	Termites mitigate the effects of drought in tropical rainforest. Science, 2019, 363, 174-177.	12.6	98
39	Suspended Dead Wood Decomposes Slowly in the Tropics, with Microbial Decay Greater than Termite Decay. Ecosystems, 2019, 22, 1176-1188.	3.4	25
40	Grazing by large savanna herbivores indirectly alters ant diversity and promotes resource monopolisation. PeerJ, 2019, 7, e6226.	2.0	3
41	Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecology Letters, 2018, 21, 557-567.	6.4	55
42	Woody encroachment slows decomposition and termite activity in an African savanna. Global Change Biology, 2018, 24, 2597-2606.	9.5	25
43	Towards an understanding of the evolutionary role of fire in animals. Evolutionary Ecology, 2018, 32, 113-125.	1.2	147
44	Ecological engineering through fireâ€herbivory feedbacks drives the formation of savanna grazing lawns. Journal of Applied Ecology, 2018, 55, 225-235.	4.0	47
45	Continentâ€level drivers of African pyrodiversity. Ecography, 2018, 41, 889-899.	4.5	21
46	Habitat disturbance selects against both small and large species across varying climates. Ecography, 2018, 41, 1184-1193.	4.5	51
47	Habitat attribute similarities reduce impacts of landâ€use conversion on seed removal. Biotropica, 2018, 50, 39-49.	1.6	10
48	Ants are the major agents of resource removal from tropical rainforests. Journal of Animal Ecology, 2018, 87, 293-300.	2.8	88
49	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	9.5	39
50	The future of hyperdiverse tropical ecosystems. Nature, 2018, 559, 517-526.	27.8	452
51	Coping with the cold: minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecological Entomology, 2017, 42, 105-114.	2.2	75
52	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	3.2	37
53	<i>GlobalAnts</i> : a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 2017, 10, 5-20.	3.0	119
54	Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	12.6	57

#	Article	IF	CITATIONS
55	Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images. Regional Environmental Change, 2017, 17, 2193-2207.	2.9	35
56	Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes. Ecology, 2016, 97, 1611-1617.	3.2	32
57	Termite mounds differ in their importance for herbivores across savanna types, seasons and spatial scales. Oikos, 2016, 125, 726-734.	2.7	37
58	Seasonal variation in the relative dominance of herbivore guilds in an African savanna. Ecology, 2016, 97, 1618-1624.	3.2	12
59	Tropical grassy biomes: linking ecology, human use and conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160329.	4.0	73
60	Ant assemblages have darker and larger members in cold environments. Global Ecology and Biogeography, 2016, 25, 1489-1499.	5.8	95
61	The underestimated biodiversity of tropical grassy biomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150319.	4.0	103
62	Contrasting species and functional beta diversity in montane ant assemblages. Journal of Biogeography, 2015, 42, 1776-1786.	3.0	107
63	Savanna ant species richness is maintained along a bioclimatic gradient of increasing latitude and decreasing rainfall in northern Australia. Journal of Biogeography, 2015, 42, 2313-2322.	3.0	50
64	Describing termite assemblage structure in a Peruvian lowland tropical rain forest: a comparison of two alternative methods. Insectes Sociaux, 2015, 62, 141-150.	1.2	17
65	Density-body mass relationships: Inconsistent intercontinental patterns among termite feeding-groups. Acta Oecologica, 2015, 63, 16-21.	1.1	6
66	Seasonal activity patterns of African savanna termites vary across a rainfall gradient. Insectes Sociaux, 2015, 62, 157-165.	1.2	64
67	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	2.6	58
68	Variable effects of termite mounds on <scp>A</scp> frican savanna grass communities across a rainfall gradient. Journal of Vegetation Science, 2014, 25, 1405-1416.	2.2	43
69	First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. Journal of Tropical Ecology, 2014, 30, 143-152.	1.1	37
70	Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology and Evolution, 2014, 29, 205-213.	8.7	423
71	Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography, 2014, 37, 852-862.	4.5	90
72	Burning for biodiversity: highly resilient ant communities respond only to strongly contrasting fire regimes in <scp>A</scp> ustralia's seasonal tropics. Journal of Applied Ecology, 2014, 51, 1406-1413.	4.0	65

#	Article	IF	CITATIONS
73	Elevation–diversity patterns through space and time: ant communities of the Malotiâ€Drakensberg Mountains of southern Africa. Journal of Biogeography, 2014, 41, 2256-2268.	3.0	93
74	Termites promote soil carbon and nitrogen depletion: Results from an in situ macrofauna exclusion experiment, Peru. Soil Biology and Biochemistry, 2014, 77, 109-111.	8.8	13
75	Interactive Effects of Fire, Rainfall, and Litter Quality on Decomposition in Savannas: Frequent Fire Leads to Contrasting Effects. Ecosystems, 2013, 16, 866-880.	3.4	23
76	Assessing the Relative Efficiency of Termite Sampling Methods along a Rainfall Gradient in African Savannas. Biotropica, 2013, 45, 474-479.	1.6	26
77	Biodiversity variability across elevations in the Carpathians: Parallel change with landscape openness and land use. Holocene, 2013, 23, 869-881.	1.7	45
78	Does Structural Complexity Determine the Morphology of Assemblages? An Experimental Test on Three Continents. PLoS ONE, 2013, 8, e64005.	2.5	60
79	Unpacking the impoverished nature of secondary forests. Journal of Animal Ecology, 2012, 81, 937-939.	2.8	5
80	Cascading biodiversity and functional consequences of a global change–induced biome switch. Diversity and Distributions, 2012, 18, 493-503.	4.1	93
81	The discovery–dominance tradeâ€off is the exception, rather than the rule. Journal of Animal Ecology, 2012, 81, 233-241.	2.8	66
82	Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecology, 2012, 37, 658-667.	1.5	93
83	The pyrodiversity–biodiversity hypothesis: a test with savanna termite assemblages. Journal of Applied Ecology, 2012, 49, 422-430.	4.0	87
84	Does longâ€ŧerm fire exclusion in an Australian tropical savanna result in a biome shift? A test using the reintroduction of fire. Austral Ecology, 2012, 37, 693-711.	1.5	42
85	Global diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	4.1	87
86	Termite Diversity along an Amazon-Andes Elevation Gradient, Peru. Biotropica, 2011, 43, 100-107.	1.6	72
87	Preliminary investigations into a potential ant invader in Kruger National Park, South Africa. African Journal of Ecology, 2010, 48, 736-743.	0.9	4
88	Termites and fire: Current understanding and future research directions for improved savanna conservation. Austral Ecology, 2010, 35, 482-486.	1.5	25
89	How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia, 2010, 164, 1061-1073.	2.0	111
90	Habitat Complexity and Invasive Species: The Impacts of Gamba Grass (<i>Andropogon gayanus</i>) on Invertebrates in an Australian Tropical Savanna. Biotropica, 2010, 42, 688-696.	1.6	19

#	Article	IF	CITATIONS
91	Postâ€glacial patterns in vegetation dynamics in Romania: homogenization or differentiation?. Journal of Biogeography, 2010, 37, 2197-2208.	3.0	36
92	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	2.3	23
93	Beyond the forest edge: Ecology, diversity and conservation of the grassy biomes. Biological Conservation, 2010, 143, 2395-2404.	4.1	428
94	Cornerstones of biodiversity conservation? Comparing the management effectiveness of Kruger and Kakadu National Parks, two key savanna reserves. Biodiversity and Conservation, 2009, 18, 3643-3662.	2.6	32
95	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	6.4	233
96	Competition and the Role of Dominant Ants. , 2009, , 77-96.		35
97	Ant Diversity and Function in Disturbed and Changing Habitats. , 2009, , 137-156.		35
98	Synthesis and Perspectives. , 2009, , 305-310.		0
99	An invasion revisited: the African big-headed ant (Pheidole megacephala) in northern Australia. Biological Invasions, 2008, 10, 1171-1181.	2.4	50
100	A preliminary investigation of temporal patterns in semiarid ant communities: Variation with habitat type. Austral Ecology, 2008, 33, 653-662.	1.5	19
101	Fire resilience of ant assemblages in longâ€unburnt savanna of northern Australia. Austral Ecology, 2008, 33, 830-838.	1.5	48
102	Dominant ants can control assemblage species richness in a South African savanna. Journal of Animal Ecology, 2008, 77, 1191-1198.	2.8	87
103	Habitat type influences fire resilience of ant assemblages in the semi-arid tropics of Northern Australia. Journal of Arid Environments, 2007, 69, 80-95.	2.4	34
104	Fine-scale temporal and spatial dynamics of epigaeic ants in Fynbos: sampling implications. African Entomology, 2007, 15, 1-11.	0.6	13
105	Contrasting fireâ€related resilience of ecologically dominant ants in tropical savannas of northern Australia. Diversity and Distributions, 2007, 13, 438-446.	4.1	31
106	Savanna fires increase rates and distances of seed dispersal by ants. Oecologia, 2007, 151, 33-41.	2.0	82
107	Biogeography and diversity of ants in Purnululu (Bungle Bungle) National Park and Conservation Reserve, Western Australia. Australian Journal of Zoology, 2006, 54, 123.	1.0	14
108	Patch Mosaic Burning for Biodiversity Conservation: a Critique of the Pyrodiversity Paradigm. Conservation Biology, 2006, 20, 1610-1619.	4.7	350

#	Article	IF	CITATIONS
109	Constraint and Competition in Assemblages: A Crossâ€Continental and Modeling Approach for Ants. American Naturalist, 2005, 165, 481-494.	2.1	63
110	RESPONSE - Pattern, process, and the size-grain hypothesis. Ecological Entomology, 2004, 29, 381-382.	2.2	4
111	Response of African savanna ants to long-term fire regimes. Journal of Applied Ecology, 2004, 41, 630-642.	4.0	204
112	Burning issues for conservation: A critique of faunal fire research in Southern Africa. Austral Ecology, 2003, 28, 384-395.	1.5	98
113	The size-grain hypothesis: a phylogenetic and field test. Ecological Entomology, 2003, 28, 475-481.	2.2	30
114	Title is missing!. Journal of Insect Conservation, 2001, 5, 27-36.	1.4	74
115	Contributions of Smaller Fauna to Ecological Processes and Biodiversity. , 0, , 211-232.		0
116	Termite diversity is resilient to landâ€use change along a forestâ€cocoa intensification gradient in Ghana, West Africa. Biotropica, 0, , .	1.6	0