## Paul S Buckmaster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7959953/publications.pdf Version: 2024-02-01



S RUCKMA

| #  | Article                                                                                                                                                                                                                                       | IF              | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1  | Cannabinoid receptor 1-labeled boutons in the sclerotic dentate gyrus of epileptic sea lions. Epilepsy<br>Research, 2022, 184, 106965.                                                                                                        | 0.8             | 0            |
| 2  | Non-invasive, neurotoxic surgery reduces seizures in a rat model of temporal lobe epilepsy.<br>Experimental Neurology, 2021, 343, 113761.                                                                                                     | 2.0             | 6            |
| 3  | Lack of Hyperinhibition of Oriens Lacunosum-Moleculare Cells by Vasoactive Intestinal<br>Peptide-Expressing Cells in a Model of Temporal Lobe Epilepsy. ENeuro, 2021, 8, ENEURO.0299-21.2021.                                                 | 0.9             | 6            |
| 4  | lctal onset sites and γâ€aminobutyric acidergic neuron loss in epileptic pilocarpineâ€ŧreated rats. Epilepsia,<br>2020, 61, 856-867.                                                                                                          | 2.6             | 15           |
| 5  | Proportional loss of parvalbuminâ€immunoreactive synaptic boutons and granule cells from the<br>hippocampus of sea lions with temporal lobe epilepsy. Journal of Comparative Neurology, 2019, 527,<br>2341-2355.                              | 0.9             | 12           |
| 6  | Testing Different Combinations of Acoustic Pressure and Doses of Quinolinic Acid for Induction of<br>Focal Neuron Loss in Mice Using Transcranial Low-Intensity Focused Ultrasound. Ultrasound in<br>Medicine and Biology, 2019, 45, 129-136. | 0.7             | 3            |
| 7  | A single subconvulsant dose of domoic acid at mid-gestation does not cause temporal lobe epilepsy in mice. NeuroToxicology, 2018, 66, 128-137.                                                                                                | 1.4             | 4            |
| 8  | Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. Journal of Comparative Neurology, 2017, 525, 2592-2610.                                                                 | 0.9             | 55           |
| 9  | Comparative Biology and Species Effects on Expression of Epilepsy. , 2017, , 7-19.                                                                                                                                                            |                 | 1            |
| 10 | Naturally Occurring Epilepsy and Status Epilepticus in Sea Lions. , 2017, , 413-425.                                                                                                                                                          |                 | 1            |
| 11 | Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal<br>lobe epilepsy. Epilepsia, 2016, 57, 977-983.                                                                                             | 2.6             | 36           |
| 12 | More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2016, 36, 3295-3308.                                                                  | 1.7             | 15           |
| 13 | Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy. Journal of Comparative Neurology, 2015, 523, 281-297.                        | 0.9             | 26           |
| 14 | Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy. Hippocampus, 2015, 25, 594-604.                                                                                          | 0.9             | 16           |
| 15 | Unit Activity of Hippocampal Interneurons before Spontaneous Seizures in an Animal Model of<br>Temporal Lobe Epilepsy. Journal of Neuroscience, 2015, 35, 6600-6618.                                                                          | 1.7             | 89           |
| 16 | Preictal Activity of Subicular, CA1, and Dentate Gyrus Principal Neurons in the Dorsal Hippocampus<br>before Spontaneous Seizures in a Rat Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2014,<br>34, 16671-16687.                | 1.7             | 65           |
| 17 | Hippocampal neuropathology of domoic acid–induced epilepsy in California sea lions ( <i>Zalophus) Tj ETQq1 J</i>                                                                                                                              | 0.784314<br>0.9 | ⊧rgβT /Overi |
| 18 | Does Mossy Fiber Sprouting Give Rise to the Epileptic State?. Advances in Experimental Medicine and                                                                                                                                           | 0.8             | 73           |

Biology, 2014, 813, 161-168.

0.8 73

PAUL S BUCKMASTER

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Highâ€dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe<br>epilepsy. Epilepsia, 2013, 54, 1535-1541.                                                           | 2.6 | 104       |
| 20 | Early Activation of Ventral Hippocampus and Subiculum during Spontaneous Seizures in a Rat Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2013, 33, 11100-11115.                                 | 1.7 | 151       |
| 21 | Increased Excitatory Synaptic Input to Granule Cells from Hilar and CA3 Regions in a Rat Model of<br>Temporal Lobe Epilepsy. Journal of Neuroscience, 2012, 32, 1183-1196.                                  | 1.7 | 58        |
| 22 | Distinct Neuronal Coding Schemes in Memory Revealed by Selective Erasure of Fast Synchronous Synaptic Transmission. Neuron, 2012, 73, 990-1001.                                                             | 3.8 | 165       |
| 23 | Factors affecting outcomes of pilocarpine treatment in a mouse model of temporal lobe epilepsy.<br>Epilepsy Research, 2012, 102, 153-159.                                                                   | 0.8 | 39        |
| 24 | Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia, 2012, 53, 571-582.                                                                                                 | 2.6 | 219       |
| 25 | Mossy cell dendritic structure quantified and compared with other hippocampal neurons labeled in rats in vivo. Epilepsia, 2012, 53, 9-17.                                                                   | 2.6 | 24        |
| 26 | Mossy Fiber Sprouting in the Dentate Gyrus. , 2012, , 416-431.                                                                                                                                              |     | 40        |
| 27 | Rapamycin Suppresses Mossy Fiber Sprouting But Not Seizure Frequency in a Mouse Model of Temporal<br>Lobe Epilepsy. Journal of Neuroscience, 2011, 31, 2337-2347.                                           | 1.7 | 204       |
| 28 | Rapamycin suppresses axon sprouting by somatostatin interneurons in a mouse model of temporal<br>lobe epilepsy. Epilepsia, 2011, 52, 2057-2064.                                                             | 2.6 | 51        |
| 29 | Is there a critical period for mossy fiber sprouting in a mouse model of temporal lobe epilepsy?.<br>Epilepsia, 2011, 52, 2326-2332.                                                                        | 2.6 | 23        |
| 30 | Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. Journal of Comparative Neurology, 2010, 518, 647-667.                              | 0.9 | 91        |
| 31 | Mossy fiber sprouting in the dentate gyrus. Epilepsia, 2010, 51, 39-39.                                                                                                                                     | 2.6 | 14        |
| 32 | Seizure-induced basal dendrites on granule cells. Epilepsia, 2010, 51, 43-43.                                                                                                                               | 2.6 | 2         |
| 33 | Stress coping stimulates hippocampal neurogenesis in adult monkeys. Proceedings of the National<br>Academy of Sciences of the United States of America, 2010, 107, 14823-14827.                             | 3.3 | 89        |
| 34 | Excitatory Input Onto Hilar Somatostatin Interneurons Is Increased in a Chronic Model of Epilepsy.<br>Journal of Neurophysiology, 2010, 104, 2214-2223.                                                     | 0.9 | 44        |
| 35 | Dysfunction of the Dentate Basket Cell Circuit in a Rat Model of Temporal Lobe Epilepsy. Journal of<br>Neuroscience, 2009, 29, 7846-7856.                                                                   | 1.7 | 62        |
| 36 | Surviving Hilar Somatostatin Interneurons Enlarge, Sprout Axons, and Form New Synapses with<br>Granule Cells in a Mouse Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2009, 29,<br>14247-14256. | 1.7 | 121       |

PAUL S BUCKMASTER

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Inhibition of the Mammalian Target of Rapamycin Signaling Pathway Suppresses Dentate Granule Cell<br>Axon Sprouting in a Rodent Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2009, 29,<br>8259-8269.                         | 1.7 | 211       |
| 38 | Prolonged infusion of inhibitors of calcineurin or Lâ€ŧype calcium channels does not block mossy fiber<br>sprouting in a model of temporal lobe epilepsy. Epilepsia, 2009, 50, 56-64.                                                     | 2.6 | 10        |
| 39 | Synaptic input to dentate granule cell basal dendrites in a rat model of temporal lobe epilepsy. Journal of Comparative Neurology, 2008, 509, 190-202.                                                                                    | 0.9 | 53        |
| 40 | Changes in Granule Cell Firing Rates Precede Locally Recorded Spontaneous Seizures by Minutes in an<br>Animal Model of Temporal Lobe Epilepsy. Journal of Neurophysiology, 2008, 99, 2431-2442.                                           | 0.9 | 79        |
| 41 | Recurrent Circuits in Layer II of Medial Entorhinal Cortex in a Model of Temporal Lobe Epilepsy.<br>Journal of Neuroscience, 2007, 27, 1239-1246.                                                                                         | 1.7 | 72        |
| 42 | Inherited Epilepsy in Mongolian Gerbils. , 2006, , 273-294.                                                                                                                                                                               |     | 11        |
| 43 | GABAA Receptor–Mediated IPSCs and α1 Subunit Expression Are Not Reduced in the Substantia Nigra Pars<br>Reticulata of Gerbils With Inherited Epilepsy. Journal of Neurophysiology, 2006, 95, 2446-2455.                                   | 0.9 | 5         |
| 44 | Hyperexcitability, Interneurons, and Loss of GABAergic Synapses in Entorhinal Cortex in a Model of<br>Temporal Lobe Epilepsy. Journal of Neuroscience, 2006, 26, 4613-4623.                                                               | 1.7 | 153       |
| 45 | Prolonged Infusion of Cycloheximide Does Not Block Mossy Fiber Sprouting in a Model of Temporal<br>Lobe Epilepsy. Epilepsia, 2005, 46, 1017-1020.                                                                                         | 2.6 | 16        |
| 46 | Stereological analysis of forebrain regions in kainate-treated epileptic rats. Brain Research, 2005, 1057,<br>141-152.                                                                                                                    | 1.1 | 41        |
| 47 | Does a Unique Type of CA3 Pyramidal Cell in Primates Bypass the Dentate Gate?. Journal of Neurophysiology, 2005, 94, 896-900.                                                                                                             | 0.9 | 4         |
| 48 | Prolonged Infusion of Tetrodotoxin Does Not Block Mossy Fiber Sprouting in Pilocarpine-treated<br>Rats. Epilepsia, 2004, 45, 452-458.                                                                                                     | 2.6 | 20        |
| 49 | Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. Journal of Comparative Neurology, 2004, 470, 317-329.                                            | 0.9 | 45        |
| 50 | Recurrent excitation of granule cells with basal dendrites and low interneuron density and<br>inhibitory postsynaptic current frequency in the dentate gyrus of macaque monkeys. Journal of<br>Comparative Neurology, 2004, 476, 205-218. | 0.9 | 72        |
| 51 | Laboratory animal models of temporal lobe epilepsy. Comparative Medicine, 2004, 54, 473-85.                                                                                                                                               | 0.4 | 73        |
| 52 | Reduced Inhibition and Increased Output of Layer II Neurons in the Medial Entorhinal Cortex in a<br>Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2003, 23, 8471-8479.                                                        | 1.7 | 106       |
| 53 | Reduced Inhibition of Dentate Granule Cells in a Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2003, 23, 2440-2452.                                                                                                           | 1.7 | 340       |
| 54 | Absence of Temporal Lobe Epilepsy Pathology in Dogs with Medically Intractable Epilepsy. Journal of<br>Veterinary Internal Medicine, 2002, 16, 95-99.                                                                                     | 0.6 | 29        |

PAUL S BUCKMASTER

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Evoked Responses of the Dentate Gyrus During Seizures in Developing Gerbils With Inherited Epilepsy.<br>Journal of Neurophysiology, 2002, 88, 783-793.                                    | 0.9 | 29        |
| 56 | Axon Sprouting in a Model of Temporal Lobe Epilepsy Creates a Predominantly Excitatory Feedback<br>Circuit. Journal of Neuroscience, 2002, 22, 6650-6658.                                 | 1.7 | 280       |
| 57 | Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. Journal of Comparative Neurology, 2002, 445, 360-373.                       | 0.9 | 62        |
| 58 | Heightened seizure severity in somatostatin knockout mice. Epilepsy Research, 2002, 48, 43-56.                                                                                            | 0.8 | 63        |
| 59 | Absence of temporal lobe epilepsy pathology in dogs with medically intractable epilepsy. Journal of<br>Veterinary Internal Medicine, 2002, 16, 95-9.                                      | 0.6 | 17        |
| 60 | Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys. Journal of Comparative Neurology, 2001, 430, 264-281.                            | 0.9 | 66        |
| 61 | Somatostatin-immunoreactive interneurons contribute to lateral inhibitory circuits in the dentate gyrus of control and epileptic rats. Hippocampus, 2001, 11, 418-422.                    | 0.9 | 18        |
| 62 | Testing the Disinhibition Hypothesis of Epileptogenesis In Vivo and during Spontaneous Seizures.<br>Journal of Neuroscience, 2000, 20, 6232-6240.                                         | 1.7 | 36        |
| 63 | In Vivo Intracellular Analysis of Granule Cell Axon Reorganization in Epileptic Rats. Journal of Neurophysiology, 1999, 81, 712-721.                                                      | 0.9 | 159       |
| 64 | Highly Specific Neuron Loss Preserves Lateral Inhibitory Circuits in the Dentate Gyrus of<br>Kainate-Induced Epileptic Rats. Journal of Neuroscience, 1999, 19, 9519-9529.                | 1.7 | 250       |
| 65 | Neuron loss and axon reorganization in the dentate gyrus of cats infected with the feline immunodeficiency virus. Journal of Comparative Neurology, 1999, 411, 563-577.                   | 0.9 | 19        |
| 66 | Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate:<br>assessment of a rat model of temporal lobe epilepsy. Epilepsy Research, 1998, 31, 73-84. | 0.8 | 340       |
| 67 | Network Properties of the Dentate Gyrus in Epileptic Rats With Hilar Neuron Loss and Granule Cell<br>Axon Reorganization. Journal of Neurophysiology, 1997, 77, 2685-2696.                | 0.9 | 162       |
| 68 | Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. Journal of Comparative Neurology, 1997, 385, 385-404.       | 0.9 | 454       |
| 69 | Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. , 1997, 7, 559-570.                            |     | 85        |
| 70 | Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. , 1996, 366, 270-292.                                                                                 |     | 206       |
| 71 | Physiological and Morphological Heterogeneity of Dentate Gyrus-Hilus Interneurons in the Gerbil<br>HippocampusIn Vivo. European Journal of Neuroscience, 1995, 7, 1393-1402.              | 1.2 | 44        |
| 72 | Somatostatin-immunoreactivity in the hippocampus of mouse, rat, guinea pig, and rabbit. Hippocampus, 1994, 4, 167-180.                                                                    | 0.9 | 54        |

| #  | Article                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Hippocampal mossy cell function: A speculative view. Hippocampus, 1994, 4, 393-402.                                                | 0.9 | 123       |
| 74 | Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice.<br>Hippocampus, 1992, 2, 349-362. | 0.9 | 155       |