
Marika Lindahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7959910/publications.pdf Version: 2024-02-01

Μλαικλ Γινισληι

#	Article	IF	CITATIONS
1	The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. Plant Physiology and Biochemistry, 2021, 168, 239-251.	5.8	13
2	Coordinated Transport of Nitrate, Potassium, and Sodium. Frontiers in Plant Science, 2020, 11, 247.	3.6	98
3	Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 2016, 7, 1050.	3.6	54
4	Type- <i>f</i> thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 1951-1964.	4.8	70
5	The chloroplast NADPH thioredoxin reductase C, NTRC, controls nonâ€photochemical quenching of light energy and photosynthetic electron transport in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 804-822.	5.7	95
6	Comparative Analysis of Cyanobacterial and Plant Peroxiredoxins and Their Electron Donors. Methods in Enzymology, 2013, 527, 257-273.	1.0	6
7	Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide. Frontiers in Plant Science, 2013, 4, 310.	3.6	21
8	Thiol-Based Redox Modulation of a Cyanobacterial Eukaryotic-Type Serine/Threonine Kinase Required for Oxidative Stress Tolerance. Antioxidants and Redox Signaling, 2012, 17, 521-533.	5.4	30
9	Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco. PLoS ONE, 2012, 7, e51443.	2.5	18
10	The Disulfide Proteome and Other Reactive Cysteine Proteomes: Analysis and Functional Significance. Antioxidants and Redox Signaling, 2011, 14, 2581-2642.	5.4	127
11	A Comparative Analysis of the NADPH Thioredoxin Reductase C-2-Cys Peroxiredoxin System from Plants and Cyanobacteria A. Plant Physiology, 2011, 155, 1806-1816.	4.8	33
12	Thioredoxin targets of the plant chloroplast lumen and their implications for plastid function. Proteomics, 2010, 10, 987-1001.	2.2	89
13	Overoxidation of 2-Cys Peroxiredoxin in Prokaryotes. Journal of Biological Chemistry, 2010, 285, 34485-34492.	3.4	76
14	A Comprehensive Analysis of the Peroxiredoxin Reduction System in the Cyanobacterium <i>Synechocystis</i> sp. Strain PCC 6803 Reveals that All Five Peroxiredoxins Are Thioredoxin Dependent. Journal of Bacteriology, 2009, 191, 7477-7489.	2.2	67
15	Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria. Journal of Proteomics, 2009, 72, 416-438.	2.4	80
16	Membrane proteins from the cyanobacterium <i>Synechocystis</i> sp. PCC 6803 interacting with thioredoxin. Proteomics, 2007, 7, 3953-3963.	2.2	59
17	Selecting thioredoxins for disulphide proteomics: Target proteomes of three thioredoxins from the cyanobacterium Synechocystis sp. PCC 6803. Proteomics, 2006, 6, S186-S195.	2.2	52
18	The diversity and complexity of the cyanobacterial thioredoxin systems. Photosynthesis Research, 2006, 89, 157-171.	2.9	71

Marika Lindahl

#	Article	IF	CITATIONS
19	Systematic screening of reactive cysteine proteomes. Proteomics, 2004, 4, 448-450.	2.2	13
20	Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16107-16112.	7.1	157
21	The Thylakoid FtsH Protease Plays a Role in the Light-Induced Turnover of the Photosystem II D1 Protein. Plant Cell, 2000, 12, 419-431.	6.6	356
22	Isolation of pigment-binding early light-inducible proteins from pea. FEBS Journal, 1999, 260, 453-460.	0.2	106
23	Induction of Acclimative Proteolysis of the Light-Harvesting Chlorophyll a/b Protein of Photosystem II in Response to Elevated Light Intensities. Plant Physiology, 1998, 118, 827-834.	4.8	113
24	ldentification and Characterization of DegP, a Serine Protease Associated with the Luminal Side of the Thylakoid Membrane. Journal of Biological Chemistry, 1998, 273, 7094-7098.	3.4	125
25	The Proteolytic Machinery of Chloroplasts: Homologues of Bacterial Proteases. , 1998, , 1871-1876.		Ο
26	Title is missing!. Photosynthesis Research, 1997, 54, 227-236.	2.9	43
27	Degradation of the Light-Stress Protein is Mediated by an ATP-Independent, Serine-Type Protease Under Low-Light Conditions. FEBS Journal, 1996, 236, 591-599.	0.2	33
28	Identification, Characterization, and Molecular Cloning of a Homologue of the Bacterial FtsH Protease in Chloroplasts of Higher Plants. Journal of Biological Chemistry, 1996, 271, 29329-29334.	3.4	184
29	Regulatory Proteolysis of the Major Lightâ€Harvesting Chlorophyll <i>a/b</i> Protein of Photosystem II by a Lightâ€Induced Membraneâ€Associated Enzymic System. FEBS Journal, 1995, 231, 503-509.	0.2	7
30	Regulatory Proteolysis of the Major Light-Harvesting Chlorophyll a/b Protein of Photosystem II by a Light-Induced Membrane-Associated Enzymic System. FEBS Journal, 1995, 231, 503-509.	0.2	126
31	Protein phosphorylation by inorganic pyrophosphate in yeast mitochondria. Biochemical and Biophysical Research Communications, 1991, 178, 1359-1364.	2.1	14
32	Inorganic-pyrophosphate-dependent phosphorylation of spinach thylakoid proteins. FEBS Journal, 1991, 198, 183-186.	0.2	14