Marius Cautun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7959228/publications.pdf Version: 2024-02-01

MADILIS CALITIIN

#	Article	IF	CITATIONS
1	Cosmological forecasts with the clustering of weak lensing peaks. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4729-4746.	4.4	6
2	The chemo-dynamical groups of Galactic globular clusters. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4107-4129.	4.4	28
3	The spatial distribution of satellites in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 514, 390-402.	4.4	4
4	Deviations from tidal torque theory: Evolution of the halo spin–filament alignment. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5528-5545.	4.4	12
5	Cosmic Ballet III: Halo spin evolution in the cosmic web. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2280-2299.	4.4	19
6	Caught in the cosmic web: Environmental effect on halo concentrations, shape, and spin. Physical Review D, 2021, 103, .	4.7	24
7	Joint constraints on thermal relic dark matter from strong gravitational lensing, the Ly α forest, and Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5848-5862.	4.4	50
8	Statistical strong lensing. Astronomy and Astrophysics, 2021, 651, A18.	5.1	19
9	The spatial distribution of Milky Way satellites, gaps in streams, and the nature of dark matter. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4826-4839.	4.4	16
10	The survival of globular clusters in a cuspy Fornax. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2339-2353.	4.4	13
11	Constraints on the properties of warm dark matter using the satellite galaxies of the Milky Way. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 062.	5.4	43
12	The twisted dark matter halo of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6033-6048.	4.4	16
13	Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 050.	5.4	41
14	Iterative removal of redshift-space distortions from galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3451-3471.	4.4	10
15	The orbital phase space of contracted dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 495, 12-28.	4.4	17
16	Measuring the baryon acoustic oscillation peak position with different galaxy selections. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3120-3130.	4.4	3
17	The mass of our Milky Way. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	69
18	The milky way total mass profile as inferred from Gaia DR2. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4291-4313.	4.4	188

MARIUS CAUTUN

#	Article	IF	CITATIONS
19	Optimal void finders in weak lensing maps. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2417-2439.	4.4	8
20	Evolution of galactic planes of satellites in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1166-1179.	4.4	36
21	Cosmological test of gravity using weak lensing voids. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4907-4917.	4.4	24
22	Screening maps of the local Universe I – Methodology. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4912-4925.	4.4	7
23	The self-similarity of weak lensing peaks. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5833-5851.	4.4	10
24	The Cosmic Ballet II: spin alignment of galaxies and haloes with large-scale filaments in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1607-1625.	4.4	67
25	The mass of the Milky Way from satellite dynamics. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5453-5467.	4.4	102
26	The Santiago–Harvard–Edinburgh–Durham void comparison II: unveiling the Vainshtein screening using weak lensing. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1149-1165.	4.4	46
27	Reconstructing the baryon acoustic oscillations using biased tracers. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5267-5280.	4.4	18
28	The aftermath of the Great Collision between our Galaxy and the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2185-2196.	4.4	27
29	The multiplicity and anisotropy of galactic satellite accretion. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1796-1810.	4.4	51
30	Using voids to unscreen modified gravity. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3262-3272.	4.4	49
31	Tracing the cosmic web. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1195-1217.	4.4	187
32	New method for initial density reconstruction. Physical Review D, 2018, 97, .	4.7	30
33	Weak lensing by voids in weak lensing maps. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L101-L105.	3.3	28
34	The Milky Way's total satellite population and constraining the mass of the warm dark matter particle. Proceedings of the International Astronomical Union, 2018, 14, 109-113.	0.0	2
35	The Santiago–Harvard–Edinburgh–Durham void comparison – I. SHEDding light on chameleon gravity tests. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3195-3217.	4.4	78
36	Evolution of LMC/M33-mass dwarf galaxies in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 284-296.	4.4	35

MARIUS CAUTUN

#	Article	IF	CITATIONS
37	Aurigaia: mock Gaia DR2 stellar catalogues from the auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1726-1743.	4.4	44
38	The Cosmic Ballet: spin and shape alignments of haloes in the cosmic web. Monthly Notices of the Royal Astronomical Society, 2018, 481, 414-438.	4.4	76
39	The total satellite population of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2853-2870.	4.4	97
40	The tangential velocity excess of the Milky Way satellites. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L41-L45.	3.3	27
41	Alignments between galaxies, satellite systems and haloes. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3772-3783.	4.4	47
42	The view from the boundary: a new void stacking method. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2540-2553.	4.4	33
43	The Copernicus Complexio: a high-resolution view of the small-scale Universe. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3492-3509.	4.4	84
44	A new spin on discs of satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2576-2587.	4.4	42
45	Planes of satellite galaxies: when exceptions are the rule. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3838-3852.	4.4	79
46	Weak lensing by voids in modified lensing potentials. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 028-028.	5.4	81
47	NEXUS OF THE COSMIC WEB. , 2015, , .		3
48	The cosmic web in CosmoGrid void regions. Proceedings of the International Astronomical Union, 2014, 11, 575-579.	0.0	0
49	Understanding the cosmic web. Proceedings of the International Astronomical Union, 2014, 11, 47-56.	0.0	3
50	Milky Way mass constraints from the Galactic satellite gap. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2049-2060.	4.4	53
51	Evolution of the cosmic web. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2923-2973.	4.4	248
52	Subhalo statistics of galactic haloes: beyond the resolution limit. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1820-1835.	4.4	33
53	Bayesian Cosmic Web Reconstruction: BARCODE for Clusters. Proceedings of the International Astronomical Union, 2014, 11, 271-288.	0.0	4
54	DM haloes in the fifth-force cosmology. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 012-012.	5.4	23

#	Article	IF	CITATIONS
55	Assembly of filamentary void galaxy configurations. Monthly Notices of the Royal Astronomical Society, 2013, 435, 222-241.	4.4	38
56	NEXUS: tracing the cosmic web connection. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1286-1308.	4.4	164
57	Constraining cosmology with weak lensing voids. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	17