Rui Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7959163/publications.pdf Version: 2024-02-01

Ριμ Ζμομ

#	Article	IF	CITATIONS
1	Synergistic Effects of Surface Chemistry and Topologic Structure from Modified Microarc Oxidation Coatings on Ti Implants for Improving Osseointegration. ACS Applied Materials & Interfaces, 2015, 7, 8932-8941.	4.0	74
2	Structure, MC3T3-E1 Cell Response, and Osseointegration of Macroporous Titanium Implants Covered by a Bioactive Microarc Oxidation Coating with Microporous Structure. ACS Applied Materials & Interfaces, 2014, 6, 4797-4811.	4.0	41
3	The structure and in vitro apatite formation ability of porous titanium covered bioactive microarc oxidized TiO2-based coatings containing Si, Na and Ca. Ceramics International, 2014, 40, 501-509.	2.3	39
4	Bioactive coating with hierarchical double porous structure on titanium surface formed by two-step microarc oxidation treatment. Surface and Coatings Technology, 2014, 252, 148-156.	2.2	30
5	Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO ₂ –TiO ₂ Bilayered Surface. ACS Applied Materials & Interfaces, 2018, 10, 30191-30200.	4.0	26
6	Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. Materials Science and Engineering C, 2017, 76, 908-917.	3.8	24
7	MC3T3-E1 cell response of amorphous phase/TiO2 nanocrystal composite coating prepared by microarc oxidation on titanium. Materials Science and Engineering C, 2014, 39, 186-195.	3.8	23
8	Dual heterogeneous structure facilitating an excellent strength-ductility combination in an additively manufactured multi-principal-element alloy. Materials Research Letters, 2022, 10, 575-584.	4.1	23
9	Osseointegration of bioactive microarc oxidized amorphous phase/TiO2 nanocrystals composited coatings on titanium after implantation into rabbit tibia. Journal of Materials Science: Materials in Medicine, 2014, 25, 1307-1318.	1.7	19
10	The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface. Materials Science and Engineering C, 2015, 49, 669-680.	3.8	17
11	Conformal coating containing Ca, P, Si and Na with double-level porous surface structure on titanium formed by a three-step microarc oxidation. RSC Advances, 2015, 5, 28908-28920.	1.7	16
12	The effect of titanium bead diameter of porous titanium on the formation of micro-arc oxidized TiO2-based coatings containing Si and Ca. Ceramics International, 2013, 39, 5725-5732.	2.3	14
13	Titania nanotube/nano-brushite composited bioactive coating with micro/nanotopography on titanium formed by anodic oxidation and hydrothermal treatment. Ceramics International, 2015, 41, 13115-13125.	2.3	12
14	Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications. Materials Science and Engineering C, 2013, 33, 4118-4125.	3.8	10
15	H ₂ Ti ₅ O ₁₁ ·H ₂ O nanorod arrays formed on a Ti surface via a hybrid technique of microarc oxidation and chemical treatment. CrystEngComm, 2015, 17, 2705-2717.	1.3	9
16	MC3T3-E1 cells' response and osseointegration of bioactive sphene–titanium oxide composite coatings fabricated by a hybrid technique of microarc oxidation and heat treatment on titanium. Journal of Materials Chemistry B, 2014, 2, 2993.	2.9	8
17	Effect of heat treatment atmosphere on the structure and apatite-inducing ability of Ca, P, Si and Na incorporated microarc oxidation coating on titanium. Surface and Coatings Technology, 2017, 310, 190-198.	2.2	5
18	Electrically bioactive coating on Ti with bi-layered SnO ₂ –TiO ₂ hetero-structure for improving osteointegration. Journal of Materials Chemistry B, 2018, 6, 3989-3998.	2.9	5