
Francesca Tuorto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7959004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes and Development, 2010, 24, 1590-1595.	2.7	604
2	RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nature Structural and Molecular Biology, 2012, 19, 900-905.	3.6	488
3	Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nature Cell Biology, 2018, 20, 535-540.	4.6	302
4	Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nature Genetics, 1996, 14, 218-222.	9.4	262
5	Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development (Cambridge), 2004, 131, 2037-2048.	1.2	190
6	RNA–Mediated Epigenetic Heredity Requires the Cytosine Methyltransferase Dnmt2. PLoS Genetics, 2013, 9, e1003498.	1.5	173
7	The <scp>tRNA</scp> methyltransferase Dnmt2 is required forÂaccurate polypeptide synthesis duringÂhaematopoiesis. EMBO Journal, 2015, 34, 2350-2362.	3.5	154
8	Sperm RNA code programmes the metabolic health of offspring. Nature Reviews Endocrinology, 2019, 15, 489-498.	4.3	152
9	The Mouse Cytosine-5 RNA Methyltransferase NSun2 Is a Component of the Chromatoid Body and Required for Testis Differentiation. Molecular and Cellular Biology, 2013, 33, 1561-1570.	1.1	137
10	Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Research, 2017, 27, 1589-1596.	2.4	137
11	Queuosineâ€modified tRNAs confer nutritional control of protein translation. EMBO Journal, 2018, 37, .	3.5	134
12	Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nature Neuroscience, 2003, 6, 453-460.	7.1	129
13	Valproate and Amitriptyline Exert Common and Divergent Influences on Global and Gene Promoter-Specific Chromatin Modifications in Rat Primary Astrocytes. Neuropsychopharmacology, 2010, 35, 792-805.	2.8	112
14	Extensive Methylation of Promoter Sequences Silences Lentiviral Transgene Expression During Stem Cell Differentiation In Vivo. Molecular Therapy, 2012, 20, 1014-1021.	3.7	87
15	Retinoic Acid Induces Stage-Specific Repatterning of the Rostral Central Nervous System. Developmental Biology, 1996, 175, 347-357.	0.9	79
16	Genome recoding by tRNA modifications. Open Biology, 2016, 6, 160287.	1.5	70
17	Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Nature Communications, 2012, 3, 818.	5.8	65
18	Otx2 Controls Identity and Fate of Glutamatergic Progenitors of the Thalamus by Repressing GABAergic Differentiation. Journal of Neuroscience, 2006, 26, 5955-5964.	1.7	62

Francesca Tuorto

#	Article	IF	CITATIONS
19	Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Research, 2019, 47, 3711-3727.	6.5	53
20	Otx genes in the evolution of the vertebrate brain. Brain Research Bulletin, 2005, 66, 410-420.	1.4	49
21	Loss of Proteostasis Is a Pathomechanism in Cockayne Syndrome. Cell Reports, 2018, 23, 1612-1619.	2.9	42
22	Tangential migration of cells from the basal to the dorsal telencephalic regions in the chick. European Journal of Neuroscience, 2003, 18, 3388-3393.	1.2	35
23	Ribosomal transcription is regulated by PGC-1alpha and disturbed in Huntington's disease. Scientific Reports, 2017, 7, 8513.	1.6	31
24	Genomic organization and chromosomal localization of the mouse Connexin36 (mCx36) gene. Gene, 2000, 251, 123-130.	1.0	30
25	Role of the Otx1 gene in cell differentiation of mammalian cortex. European Journal of Neuroscience, 2004, 19, 2893-2902.	1.2	27
26	Translational adaptation to heat stress is mediated by RNA 5â€methylcytosine in <i>Caenorhabditis elegans</i> . EMBO Journal, 2021, 40, e105496.	3.5	24
27	OTX1 compensates for OTX2 requirement in regionalisation of anterior neuroectoderm. Gene Expression Patterns, 2003, 3, 497-501.	0.3	22
28	rRNA and tRNA Bridges to Neuronal Homeostasis in Health and Disease. Journal of Molecular Biology, 2019, 431, 1763-1779.	2.0	22
29	Queuine Micronutrient Deficiency Promotes Warburg Metabolism and Reversal of the Mitochondrial ATP Synthase in Hela Cells. Nutrients, 2020, 12, 871.	1.7	17
30	BisAMP: A web-based pipeline for targeted RNA cytosine-5 methylation analysis. Methods, 2019, 156, 121-127.	1.9	14
31	Division of labour: tRNA methylation by the NSun2 tRNA methyltransferases Trm4a and Trm4b in fission yeast. RNA Biology, 2019, 16, 249-256.	1.5	13
32	RNA marker modifications reveal the necessity for rigorous preparation protocols to avoid artifacts in epitranscriptomic analysis. Nucleic Acids Research, 2022, 50, 4201-4215.	6.5	13
33	RiboVIEW: a computational framework for visualization, quality control and statistical analysis of ribosome profiling data. Nucleic Acids Research, 2020, 48, e7-e7.	6.5	11
34	Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death and Disease, 2021, 12, 1139.	2.7	10
35	Analysis of Queuosine tRNA Modification Using APB Northern Blot Assay. Methods in Molecular Biology, 2021, 2298, 217-230.	0.4	4
36	B20â€Dissecting the role of nucleolar stress in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A16.1-A16.	0.9	0

#	Article	IF	CITATIONS
37	Analysis of Ribosome Profiling Data. Methods in Molecular Biology, 2022, 2428, 133-156.	0.4	0