Janet D Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/795895/publications.pdf

Version: 2024-02-01

119 papers 3,684 citations

36 h-index 55 g-index

120 all docs

 $\begin{array}{c} 120 \\ \\ \text{docs citations} \end{array}$

120 times ranked 2670 citing authors

#	Article	IF	CITATIONS
1	Adaptive physiological water conservation explains hypertension and muscle catabolism in experimental chronic renal failure. Acta Physiologica, 2021, 232, e13629.	1.8	36
2	An AMPK activator as a therapeutic option for congenital nephrogenic diabetes insipidus. JCI Insight, 2021, 6, .	2.3	5
3	Downregulation of let-7 by Electrical Acupuncture Increases Protein Synthesis in Mice. Frontiers in Physiology, 2021, 12, 697139.	1.3	5
4	Adrenomedullin Inhibits Osmotic Water Permeability in Rat Inner Medullary Collecting Ducts. Cells, 2020, 9, 2533.	1.8	8
5	Inhibition of urea transporter ameliorates uremic cardiomyopathy in chronic kidney disease. FASEB Journal, 2020, 34, 8296-8309.	0.2	8
6	14-3-3γ, a novel regulator of the large-conductance Ca ²⁺ -activated K ⁺ channel. American Journal of Physiology - Renal Physiology, 2020, 319, F52-F62.	1.3	3
7	UT-A1/A3 knockout mice show reduced fibrosis following unilateral ureteral obstruction. American Journal of Physiology - Renal Physiology, 2020, 318, F1160-F1166.	1.3	2
8	Exogenous miR-29a Attenuates Muscle Atrophy and Kidney Fibrosis in Unilateral Ureteral Obstruction Mice. Human Gene Therapy, 2020, 31, 367-375.	1.4	24
9	Aldosterone Decreases Vasopressin-Stimulated Water Reabsorption in Rat Inner Medullary Collecting Ducts. Cells, 2020, 9, 967.	1.8	4
10	Exogenous miRâ€26a suppresses muscle wasting and renal fibrosis in obstructive kidney disease. FASEB Journal, 2019, 33, 13590-13601.	0.2	48
11	High glucose reduces expression of podocin in cultured human podocytes by stimulating TRPC6. American Journal of Physiology - Renal Physiology, 2019, 317, F1605-F1611.	1.3	17
12	<i>miR-26a</i> Limits Muscle Wasting and Cardiac Fibrosis through Exosome-Mediated microRNA Transfer in Chronic Kidney Disease. Theranostics, 2019, 9, 1864-1877.	4.6	108
13	GDE5 inhibition accumulates intracellular glycerophosphocholine and suppresses adipogenesis at a mitotic clonal expansion stage. American Journal of Physiology - Cell Physiology, 2019, 316, C162-C174.	2.1	6
14	Hyperglycemia promotes microvillus membrane expression of DMT1 in intestinal epithelial cells in a PKCαâ€dependent manner. FASEB Journal, 2019, 33, 3549-3561.	0.2	16
15	Glucagon infusion alters the hyperpolarized ¹³ Câ€urea renal hemodynamic signature. NMR in Biomedicine, 2019, 32, e4028.	1.6	7
16	Exosome-Mediated miR-29 Transfer Reduces Muscle Atrophy and Kidney Fibrosis in Mice. Molecular Therapy, 2019, 27, 571-583.	3.7	130
17	Inner Medullary Urea Transporters Contribute to Development of Renal Fibrosis in Mice With Unilateral Ureteral Obstruction. FASEB Journal, 2019, 33, 575.9.	0.2	O
18	Role of adrenomedullin in mediating water reabsorption in rat inner medullary collecting ducts. FASEB Journal, 2019, 33, 750.3.	0.2	0

#	Article	IF	Citations
19	Electricallyâ€stimulated acupuncture improves muscle function and increases renal blood flow through exosomesâ€carried miRâ€181. FASEB Journal, 2019, 33, 701.4.	0.2	O
20	Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels. Journal of the American Society of Nephrology: JASN, 2018, 29, 1097-1107.	3.0	59
21	miRNAâ€23a/27a attenuates muscle atrophy and renal fibrosis through muscleâ€kidney crosstalk. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 755-770.	2.9	103
22	GRHL2 Is Required for Collecting Duct Epithelial Barrier Function and Renal Osmoregulation. Journal of the American Society of Nephrology: JASN, 2018, 29, 857-868.	3.0	20
23	Protein kinase $\hat{\text{Cl}}_{\pm}$ deletion causes hypotension and decreased vascular contractility. Journal of Hypertension, 2018, 36, 510-519.	0.3	7
24	Electrically stimulated acupuncture increases renal blood flow through exosome-carried miR-181. American Journal of Physiology - Renal Physiology, 2018, 315, F1542-F1549.	1.3	18
25	Increased glucocorticoid hormone actions induce skin-specific Na ⁺ and water loss in melanocortin 3 receptor knockout mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, YIA-4.	0.0	0
26	Increased glucocorticoid hormone actions induce skin-specific Na ⁺ and water loss in melanocortin 3 receptor knockout mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-4-26.	0.0	0
27	UT (Urea Transporter). , 2018, , 5862-5872.		0
28	Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle. American Journal of Physiology - Renal Physiology, 2017, 312, F1128-F1140.	1.3	64
29	Urea transporters and sweat response to uremia. Physiological Reports, 2016, 4, e12825.	0.7	28
30	Phosphatase inhibition increases AQP2 accumulation in the rat IMCD apical plasma membrane. American Journal of Physiology - Renal Physiology, 2016, 311, F1189-F1197.	1.3	24
31	Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts. American Journal of Physiology - Renal Physiology, 2016, 310, F1008-F1012.	1.3	46
32	Urea Transporter B and MicroRNA-200c Differ in Kidney Outer Versus Inner Medulla Following Dehydration. American Journal of the Medical Sciences, 2016, 352, 296-301.	0.4	5
33	Effect of Dapagliflozin Treatment on Fluid and Electrolyte Balance in Diabetic Rats. American Journal of the Medical Sciences, 2016, 352, 517-523.	0.4	37
34	Physiological insights into novel therapies for nephrogenic diabetes insipidus. American Journal of Physiology - Renal Physiology, 2016, 311, F1149-F1152.	1.3	32
35	Urea transport and clinical potential of urearetics. Current Opinion in Nephrology and Hypertension, 2016, 25, 444-451.	1.0	21
36	Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates denervation-induced muscle atrophy. Journal of Applied Physiology, 2016, 120, 426-436.	1.2	39

#	Article	IF	CITATIONS
37	Transgenic Restoration of Urea Transporter A1 Confers Maximal Urinary Concentration in the Absence of Urea Transporter A3. Journal of the American Society of Nephrology: JASN, 2016, 27, 1448-1455.	3.0	19
38	Metformin improves urine concentration in rodents with nephrogenic diabetes insipidus. JCI Insight, 2016, 1 , .	2.3	43
39	UT (Urea Transporter). , 2016, , 1-10.		0
40	Activation of protein kinase Cα increases phosphorylation of the UT-A1 urea transporter at serine 494 in the inner medullary collecting duct. American Journal of Physiology - Cell Physiology, 2015, 309, C608-C615.	2.1	11
41	Acupuncture plus Low-Frequency Electrical Stimulation (Acu-LFES) Attenuates Diabetic Myopathy by Enhancing Muscle Regeneration. PLoS ONE, 2015, 10, e0134511.	1.1	41
42	PKC- $\hat{l}\pm$ contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2. American Journal of Physiology - Renal Physiology, 2015, 308, F140-F148.	1.3	24
43	Low-Frequency Electrical Stimulation Attenuates Muscle Atrophy in CKD—A Potential Treatment Strategy. Journal of the American Society of Nephrology: JASN, 2015, 26, 626-635.	3.0	68
44	Downregulation of urea transporter UT-A1 activity by 14-3-3 protein. American Journal of Physiology - Renal Physiology, 2015, 309, F71-F78.	1.3	12
45	Activation of Protein Kinase C-α and Src Kinase Increases Urea Transporter A1 α-2, 6 Sialylation. Journal of the American Society of Nephrology: JASN, 2015, 26, 926-934.	3.0	17
46	NSAIDs Alter Phosphorylated Forms of AQP2 in the Inner Medullary Tip. PLoS ONE, 2015, 10, e0141714.	1.1	16
47	Aging increases CCN1 expression leading to muscle senescence. American Journal of Physiology - Cell Physiology, 2014, 306, C28-C36.	2.1	63
48	Expression of Urea Transporters and Their Regulation. Sub-Cellular Biochemistry, 2014, 73, 79-107.	1.0	9
49	Urine concentration in the diabetic mouse requires both urea and water transporters. American Journal of Physiology - Renal Physiology, 2013, 304, F103-F111.	1.3	13
50	Role of protein kinase C-α in hypertonicity-stimulated urea permeability in mouse inner medullary collecting ducts. American Journal of Physiology - Renal Physiology, 2013, 304, F233-F238.	1.3	23
51	RNAâ€6eq analysis of glycosylation related gene expression in Streptozotocinâ€induced diabetic rat kidney inner medulla. FASEB Journal, 2013, 27, 1111.16.	0.2	0
52	TRANSGENIC MICE EXPRESSING UTâ€A1, BUT LACKING UTâ€A3, HAVE INTACT URINE CONCENTRATING ABILITY. FASEB Journal, 2013, 27, 1111.17.	0.2	7
53	Acute calcineurin inhibition with tacrolimus increases phosphorylated UT-A1. American Journal of Physiology - Renal Physiology, 2012, 302, F998-F1004.	1.3	11
54	Protein kinase C-α mediates hypertonicity-stimulated increase in urea transporter phosphorylation in the inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2012, 302, F1098-F1103.	1.3	34

#	Article	IF	CITATIONS
55	Protein abundance of urea transporters and aquaporin 2 change differently in nephrotic pair-fed vs. non-pair-fed rats. American Journal of Physiology - Renal Physiology, 2012, 302, F1545-F1553.	1.3	12
56	Lack of protein kinase C- \hat{l} ± leads to impaired urine concentrating ability and decreased aquaporin-2 in angiotensin II-induced hypertension. American Journal of Physiology - Renal Physiology, 2012, 303, F37-F44.	1.3	19
57	The Role of Nitric Oxide in the Dysregulation of the Urine Concentration Mechanism in Diabetes Mellitus. Frontiers in Physiology, 2012, 3, 176.	1.3	14
58	Molecular mechanisms of urea transport in health and disease. Pflugers Archiv European Journal of Physiology, 2012, 464, 561-572.	1.3	40
59	Role of PKC α in Hypertonicityâ€stimulated Urea Permeability. FASEB Journal, 2012, 26, 885.12.	0.2	0
60	The urea transporter UTâ€A1 is phosphorylated at serines 486 and 499 downstream of cyclic AMP production. FASEB Journal, 2012, 26, 885.11.	0.2	0
61	Urea Transport in the Kidney. , 2011, 1, 699-729.		69
62	Mature <i>N</i> â€linked glycans facilitate UTâ€A1 urea transporter lipid raft compartmentalization. FASEB Journal, 2011, 25, 4531-4539.	0.2	36
63	Cyclooxygenase-2 in the kidney: good, BAD, or both?. Kidney International, 2011, 80, 905-907.	2.6	4
64	Increased susceptibility to acute kidney injury due to endoplasmic reticulum stress in mice lacking tumor necrosis factor-l± and its receptor 1. Kidney International, 2011, 79, 613-623.	2.6	23
65	Regulation of renal urea transport by vasopressin. Transactions of the American Clinical and Climatological Association, 2011, 122, 82-92.	0.9	26
66	Expression of transporters involved in urine concentration recovers differently after cessation of lithium treatment. American Journal of Physiology - Renal Physiology, 2010, 298, F601-F608.	1.3	28
67	Internalization of UT-A1 urea transporter is dynamin dependent and mediated by both caveolae- and clathrin-coated pit pathways. American Journal of Physiology - Renal Physiology, 2010, 299, F1389-F1395.	1.3	27
68	Functional characterization of the central hydrophilic linker region of the urea transporter UT-A1: cAMP activation and snapin binding. American Journal of Physiology - Cell Physiology, 2010, 298, C1431-C1437.	2.1	9
69	Phosphorylation of UT-A1 on serine 486 correlates with membrane accumulation and urea transport activity in both rat IMCDs and cultured cells. American Journal of Physiology - Renal Physiology, 2010, 298, F935-F940.	1.3	33
70	Protein kinase C regulates urea permeability in the rat inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2010, 299, F1401-F1406.	1.3	30
71	Corin: an ANP protease that may regulate sodium reabsorption in nephrotic syndrome. Kidney International, 2010, 78, 635-637.	2.6	18
72	Hypertonicity Increases Urea Permeability through PKC in Inner Medullary Collecting Ducts. FASEB Journal, 2010, 24, 1024.20.	0.2	0

#	Article	IF	Citations
73	Caveolin-1 directly interacts with UT-A1 urea transporter: the role of caveolae/lipid rafts in UT-A1 regulation at the cell membrane. American Journal of Physiology - Renal Physiology, 2009, 296, F1514-F1520.	1.3	31
74	Urea and NaCl regulate UT-A1 urea transporter in opposing directions via TonEBP pathway during osmotic diuresis. American Journal of Physiology - Renal Physiology, 2009, 296, F67-F77.	1.3	14
75	Epac Regulates UT-A1 to Increase Urea Transport in Inner Medullary Collecting Ducts. Journal of the American Society of Nephrology: JASN, 2009, 20, 2018-2024.	3.0	48
76	Candesartan Differentially Regulates Epithelial Sodium Channel in Cortex Versus Medulla of Streptozotocin-Induced Diabetic Rats. Journal of Epithelial Biology & Pharmacology, 2009, 2, 23-29.	1.2	7
77	Epac Regulation of Urea Transport and the UTâ€A1 Urea Transporter in Rat Inner Medullary Collecting Duct FASEB Journal, 2009, 23, 970.9.	0.2	0
78	Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. American Journal of Physiology - Renal Physiology, 2008, 295, F295-F299.	1.3	83
79	Urea transporters UT-A1 and UT-A3 accumulate in the plasma membrane in response to increased hypertonicity. American Journal of Physiology - Renal Physiology, 2008, 295, F1336-F1341.	1.3	34
80	Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice. American Journal of Physiology - Renal Physiology, 2008, 295, F1715-F1724.	1.3	50
81	Stimulation of UT-A1-mediated transepithelial urea flux in MDCK cells by lithium. American Journal of Physiology - Renal Physiology, 2008, 294, F518-F524.	1.3	9
82	MDM2 E3 ubiquitin ligase mediates UT-A1 urea transporter ubiquitination and degradation. American Journal of Physiology - Renal Physiology, 2008, 295, F1528-F1534.	1.3	35
83	Candesartan augments compensatory changes in medullary transport proteins in the diabetic rat kidney. American Journal of Physiology - Renal Physiology, 2008, 294, F1448-F1452.	1.3	19
84	$H[\sup +]$, Water and Urea Transport in the Inner Medullary Collecting Duct and Their Role in the Prevention and Pathogenesis of Renal Stone Disease. AIP Conference Proceedings, 2008, , .	0.3	0
85	AVP causes transient formation of cAMP and activation of phosphodiesterase activity in MDCK cells. FASEB Journal, 2008, 22, 1216.13.	0.2	0
86	The UT-A1 Urea Transporter Interacts with Snapin, a SNARE-associated Protein. Journal of Biological Chemistry, 2007, 282, 30097-30106.	1.6	30
87	Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. American Journal of Physiology - Renal Physiology, 2007, 293, F1308-F1313.	1.3	76
88	The role of SNARE proteins in trafficking and function of Urea Transporter UTâ€A1. FASEB Journal, 2007, 21, A906.	0.2	0
89	Candesartan differentially regulates distal sodium transporters and channel subunits in cortex versus medulla in streptozotocinâ€induced diabetic rats FASEB Journal, 2007, 21, A1331.	0.2	0
90	Increased urinary concentrating ability of P2Y2 receptor null mice is associated with marked increase in protein abundances of AQP2 and UTâ€A in renal medulla. FASEB Journal, 2007, 21, A905.	0.2	1

#	Article	IF	CITATIONS
91	The apical membrane is the rateâ€determining barrier for vasopressinâ€regulated transâ€epithelial urea transport in MDCKâ€UTA1 cells. FASEB Journal, 2007, 21, A906.	0.2	O
92	Tissue distribution of UT-A and UT-B mRNA and protein in rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1446-R1459.	0.9	32
93	Regulation of UT-A1-mediated transepithelial urea flux in MDCK cells. American Journal of Physiology - Cell Physiology, 2006, 291, C600-C606.	2.1	42
94	Urea transporter UT-A1 and aquaporin-2 proteins decrease in response to angiotensin II or norepinephrine-induced acute hypertension. American Journal of Physiology - Renal Physiology, 2006, 291, F952-F959.	1.3	41
95	Genetic restoration of aldose reductase to the collecting tubules restores maturation of the urine concentrating mechanism. American Journal of Physiology - Renal Physiology, 2006, 291, F186-F195.	1.3	20
96	Vasopressin Increases Plasma Membrane Accumulation of Urea Transporter UT-A1 in Rat Inner Medullary Collecting Ducts. Journal of the American Society of Nephrology: JASN, 2006, 17, 2680-2686.	3.0	81
97	Loss of N-Linked Glycosylation Reduces Urea Transporter UT-A1 Response to Vasopressin. Journal of Biological Chemistry, 2006, 281, 27436-27442.	1.6	52
98	Ubiquitination regulates urea transporter UTâ€A1 cell membrane expression. FASEB Journal, 2006, 20, .	0.2	0
99	Urea may regulate urea transporter protein abundance during osmotic diuresis. American Journal of Physiology - Renal Physiology, 2005, 288, F188-F197.	1.3	33
100	Vasopressin increases urea permeability in the initial IMCD from diabetic rats. American Journal of Physiology - Renal Physiology, 2005, 289, F531-F535.	1.3	18
101	Identification and characterization of a Kidd antigen/UT-B urea transporter expressed in human colon. American Journal of Physiology - Cell Physiology, 2004, 287, C30-C35.	2.1	57
102	Aldosterone Decreases UT-A1 Urea Transporter Expression via the Mineralocorticoid Receptor. Journal of the American Society of Nephrology: JASN, 2004, 15, 558-565.	3.0	28
103	Upregulation of Urea Transporter UT-A2 and Water Channels AQP2 and AQP3 in Mice Lacking Urea Transporter UT-B. Journal of the American Society of Nephrology: JASN, 2004, 15, 1161-1167.	3.0	63
104	Urea transport in MDCK cells that are stably transfected with UT-A1. American Journal of Physiology - Cell Physiology, 2004, 286, C1264-C1270.	2.1	56
105	Role of vasopressin in diabetes mellitus-induced changes in medullary transport proteins involved in urine concentration in Brattleboro rats. American Journal of Physiology - Renal Physiology, 2004, 286, F760-F766.	1.3	50
106	Altered expression of urea transporters in response to ureteral obstruction. American Journal of Physiology - Renal Physiology, 2004, 286, F1154-F1162.	1.3	56
107	Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats. American Journal of Physiology - Renal Physiology, 2003, 285, F303-F309.	1.3	77
108	Vasopressin rapidly increases phosphorylation of UT-A1 urea transporter in rat IMCDs through PKA. American Journal of Physiology - Renal Physiology, 2002, 282, F85-F90.	1.3	119

#	Article	IF	CITATIONS
109	Urea transporters are distributed in endothelial cells and mediate inhibition of <scp>l</scp> -arginine transport. American Journal of Physiology - Renal Physiology, 2002, 283, F578-F582.	1.3	48
110	Impaired urine concentration and absence of tissue ACE: involvement of medullary transport proteins. American Journal of Physiology - Renal Physiology, 2002, 283, F517-F524.	1.3	33
111	Down-regulation of urea transporters in the renal inner medulla of lithium-fed rats. Kidney International, 2002, 61, 995-1002.	2.6	67
112	Acidosis Mediates the Upregulation of UT-A Protein in Livers from Uremic Rats. Journal of the American Society of Nephrology: JASN, 2002, 13, 581-587.	3.0	18
113	Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. American Journal of Physiology - Cell Physiology, 2001, 281, C1318-C1325.	2.1	108
114	97- and 117-kDa forms of collecting duct urea transporter UT-A1 are due to different states of glycosylation. American Journal of Physiology - Renal Physiology, 2001, 281, F133-F143.	1.3	70
115	Angiotensin II increases vasopressin-stimulated facilitated urea permeability in rat terminal IMCDs. American Journal of Physiology - Renal Physiology, 2000, 279, F835-F840.	1.3	71
116	UT-A Urea Transporter Protein Expressed in Liver. Journal of the American Society of Nephrology: JASN, 1999, 10, 2076-2083.	3.0	42
117	Cloning and Characterization of Two New Isoforms of the Rat Kidney Urea Transporter. Journal of the American Society of Nephrology: JASN, 1999, 10, 230-237.	3.0	125
118	Glucocorticoids mediate a decrease in AVP-regulated urea transporter in diabetic rat inner medulla. American Journal of Physiology - Renal Physiology, 1997, 273, F949-F953.	1.3	55
119	Regulation by cell volume of Na+-K+-2Cl? cotransport in vascular endothelial cells: role of protein phosphorylation. Journal of Membrane Biology, 1993, 132, 243-52.	1.0	56