
C Marcella Carollo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7958836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND 2COSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION. Astrophysical Journal, 2010, 721, 193-221.	4.5	1,485
2	GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS. Astrophysical Journal, 2013, 772, 119.	4.5	626
3	THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE. Astrophysical Journal, Supplement Series, 2009, 184, 218-229.	7.7	481
4	PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions*. Astrophysical Journal, 2018, 853, 179.	4.5	467
5	The Secular Evolution of Disk Structural Parameters. Astrophysical Journal, 2006, 645, 209-227.	4.5	365
6	THE <i>CHANDRA</i> COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2009, 184, 158-171.	7.7	361
7	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS. Astrophysical Journal, 2012, 757, 4.	4.5	325
8	The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2790-2813.	4.4	239
9	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A1.	5.1	236
10	UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT zÂâ^¼Â3.5 REVEALED WITH MUSE ^{â^—} . Astrophysical Journal, 2016, 831, 39.	4.5	201
11	Evolution of density profiles in high- <i>z</i> galaxies: compaction and quenching inside-out. Monthly Notices of the Royal Astronomical Society, 2016, 458, 242-263.	4.4	191
12	THE SINS/zC-SINF SURVEY of <i>z </i> â ¹ /4 2 GALAXY KINEMATICS: OUTFLOW PROPERTIES. Astrophysical Journal, 2012, 761, 43.	4.5	182
13	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A8.	5.1	167
14	The SINS/zC-SINF Survey of zÂâ^1⁄4Â2 Galaxy Kinematics: SINFONI Adaptive Optics–assisted Data and Kiloparsec-scale Emission-line Properties ^{â^—} . Astrophysical Journal, Supplement Series, 2018, 238, 21.	7.7	143
15	SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?. Astrophysical Journal, 2016, 833, 1.	4.5	118
16	The KMOS ^{3D} Survey: Demographics and Properties of Galactic Outflows at zÂ=Â0.6–2.7*. Astrophysical Journal, 2019, 875, 21.	4.5	118
17	ISM EXCITATION AND METALLICITY OF STAR-FORMING GALAXIES AT ZÂ≃Â3.3 FROM NEAR-IR SPECTROSCOPY Astrophysical Journal, 2016, 822, 42.	۲. 4.5	110
18	Dust Attenuation, Bulge Formation, and Inside-out Quenching of Star Formation in Star-forming Main Sequence Galaxies at z â^1⁄4 2*. Astrophysical Journal, 2018, 859, 56.	4.5	100

#	Article	IF	CITATIONS
19	CONFIRMATION OF THE COMPACTNESS OF A <i>z</i> = 1.91 QUIESCENT GALAXY WITH <i>HUBBLE SPACE TELESCOPE</i> 'S WIDE FIELD CAMERA 3. Astrophysical Journal Letters, 2010, 714, L244-L248.	8.3	97
20	Dynamics and stellar populations in early-type galaxies. Monthly Notices of the Royal Astronomical Society, 1994, 270, 523-569.	4.4	94
21	THE AGES, METALLICITIES, AND ELEMENT ABUNDANCE RATIOS OF MASSIVE QUENCHED GALAXIES AT \$zsimeq 1.6\$. Astrophysical Journal, 2015, 808, 161.	4.5	91
22	The MUSE Atlas of Disks (MAD): resolving star formation rates and gas metallicities on <100 pc scalesâ€. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5009-5027.	4.4	80
23	The Subaru COSMOS 20: Subaru optical imaging of the HST COSMOS field with 20Âfilters. Publication of the Astronomical Society of Japan, 2015, 67, .	2.5	65
24	MINOR MERGERS OR PROGENITOR BIAS? THE STELLAR AGES OF SMALL AND LARGE QUENCHED GALAXIES. Astrophysical Journal, 2016, 831, 173.	4.5	62
25	Connection between Stellar Mass Distributions within Galaxies and Quenching Since zÂ=Â2. Astrophysical Journal, 2017, 837, 2.	4.5	58
26	Large Stellar Disks in Small Elliptical Galaxies. Astrophysical Journal, 1999, 513, L25-L28.	4.5	55
27	THE ZURICH ENVIRONMENTAL STUDY OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. I. WHICH ENVIRONMENT AFFECTS GALAXY EVOLUTION?. Astrophysical Journal, 2013, 776, 71.	4.5	50
28	Dark Galaxy Candidates at Redshift â^¼3.5 Detected with MUSE*. Astrophysical Journal, 2018, 859, 53.	4.5	37
29	Constraints on Quenching of ZÂ≲Â2 Massive Galaxies from the Evolution of the Average Sizes of Star-forming and Quenched Populations in COSMOS. Astrophysical Journal, 2017, 839, 71.	4.5	36
30	Multimass spherical structure models for N-body simulations. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1543-1556.	4.4	35
31	Stacking the Cosmic Web in fluorescent Ly α emission with MUSE. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3854-3869.	4.4	30
32	THE RED SEQUENCE AT BIRTH IN THE GALAXY CLUSTER Cl J1449+0856 AT z = 2. Astrophysical Journal Letters, 2016, 833, L20.	8.3	28
33	On the Evolution of the Central Density of Quiescent Galaxies. Astrophysical Journal Letters, 2017, 844, L1.	8.3	28
34	A GIANT LYα NEBULA IN THE CORE OF AN X-RAY CLUSTER AT ZÂ=Â1.99: IMPLICATIONS FOR EARLY ENERGY INJECTION. Astrophysical Journal, 2016, 829, 53.	4.5	27
35	The infrared–radio correlation of spheroid- and disc-dominated star-forming galaxies to zÂâ^1⁄4Â1.5 in the COSMOS field. Monthly Notices of the Royal Astronomical Society, 2018, 475, 827-838.	4.4	27
36	The MUSE Atlas of Discs (MAD): Ionized gas kinematic maps and an application to diffuse ionized gas. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4089-4107.	4.4	24

#	Article	IF	CITATIONS
37	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. III. THE CONSTANCY OF THE FAINT-END SLOPE AND THE MERGING OF GALAXIES. Astrophysical Journal, 2014, 790, 95.	4.5	17
38	Supernova remnants, planetary nebulae and the distance toÂNGCÂ4214. Astrophysics and Space Science, 2010, 330, 123-131.	1.4	15
39	DISCOVERY OF MASSIVE, MOSTLY STAR FORMATION QUENCHED GALAXIES WITH EXTREMELY LARGE Ly <i>î±</i> EQUIVALENT WIDTHS AT <i>z</i> â^¼ 3. Astrophysical Journal Letters, 2015, 809, L7.	8.3	14
40	The build-up of the outskirts of distant star-forming galaxies at $z \sim 2$. Proceedings of the International Astronomical Union, 2016, 11, 327-329.	0.0	1
41	The Intriguing Life of Massive Galaxies: The Connections between α <i>_s</i> , β and Merging. Proceedings of the International Astronomical Union, 2012, 8, 167-170.	0.0	0
42	A phenomenological approach to the evolution of galaxies. Proceedings of the International Astronomical Union, 2012, 8, 141-150.	0.0	0