List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7957788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering the Increased Prevalence of TP53 Mutations in Metastatic Prostate Cancer. Cancer Informatics, 2022, 21, 117693512210870.	0.9	3
2	A detailed characterization of stepwise activation of the androgen receptor variant 7 in prostate cancer cells. Oncogene, 2021, 40, 1106-1117.	2.6	24
3	Data of relative mRNA and protein abundances of androgen receptor splice variants in castration-resistant prostate cancer. Data in Brief, 2021, 34, 106774.	0.5	2
4	Comprehensive Analysis of Multiple Cohort Datasets Deciphers the Utility of Germline Single-Nucleotide Polymorphisms in Prostate Cancer Diagnosis. Cancer Prevention Research, 2021, 14, 741-752.	0.7	4
5	Increased transcription and high translation efficiency lead to accumulation of androgen receptor splice variant after androgen deprivation therapy. Cancer Letters, 2021, 504, 37-48.	3.2	17
6	Gene expression analysis reveals a pitfall in the molecular research of prostate tumors relevant to Gleason score. Journal of Bioinformatics and Computational Biology, 2020, 18, 2050032.	0.3	0
7	CUDCâ€907, a novel dual PI3K and HDAC inhibitor, in prostate cancer: Antitumour activity and molecular mechanism of action. Journal of Cellular and Molecular Medicine, 2020, 24, 7239-7253.	1.6	35
8	SEER and Gene Expression Data Analysis Deciphers Racial Disparity Patterns in Prostate Cancer Mortality and the Public Health Implication. Scientific Reports, 2020, 10, 6820.	1.6	8
9	Abstract 823: Gene expression analysis reveals a pitfall in the molecular research of prostate tumors relevant to Gleason score. , 2020, , .		1
10	Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer. Oncogene, 2019, 38, 7060-7072.	2.6	31
11	High-Throughput Sequence Analysis of Peripheral T-Cell Lymphomas Indicates Subtype-Specific Viral Gene Expression Patterns and Immune Cell Microenvironments. MSphere, 2019, 4, .	1.3	13
12	Raddeanin A downâ€regulates androgen receptor and its splice variants in prostate cancer. Journal of Cellular and Molecular Medicine, 2019, 23, 3656-3664.	1.6	8
13	A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene, 2019, 38, 4977-4989.	2.6	80
14	Comparative Analysis of Gammaherpesvirus Circular RNA Repertoires: Conserved and Unique Viral Circular RNAs. Journal of Virology, 2019, 93, .	1.5	58
15	Impact of taxanes on androgen receptor signaling. Asian Journal of Andrology, 2019, 21, 249.	0.8	12
16	Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. European Urology, 2018, 73, 715-723.	0.9	105
17	Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). Journal of Biological Chemistry, 2018, 293, 12719-12729.	1.6	24
18	The Epstein Barr virus circRNAome. PLoS Pathogens, 2018, 14, e1007206.	2.1	112

#	Article	IF	CITATIONS
19	Asymmetric 1,5-diarylpenta-1,4-dien-3-ones: Antiproliferative activity in prostate epithelial cell models and pharmacokinetic studies. European Journal of Medicinal Chemistry, 2017, 137, 263-279.	2.6	7
20	Interplay between Cytoplasmic and Nuclear Androgen Receptor Splice Variants Mediates Castration Resistance. Molecular Cancer Research, 2017, 15, 59-68.	1.5	57
21	A Whole Blood Assay for AR-V7 and AR ^{v567es} in Patients with Prostate Cancer. Journal of Urology, 2016, 196, 1758-1763.	0.2	46
22	Emerging data on androgen receptor splice variants in prostate cancer. Endocrine-Related Cancer, 2016, 23, T199-T210.	1.6	47
23	Effects of surfactants on size and structure of amylose nanoparticles prepared by precipitation. Bulletin of Materials Science, 2016, 39, 35-39.	0.8	15
24	Methylselenocysteine preventing castration-resistant progression of prostate cancer. Prostate, 2015, 75, 1001-1008.	1.2	6
25	Effect of operating conditions on size and morphology of amylose nanoparticles prepared by precipitation. Starch/Staerke, 2015, 67, 365-372.	1.1	39
26	Androgen Receptor Splice Variants Dimerize to Transactivate Target Genes. Cancer Research, 2015, 75, 3663-3671.	0.4	158
27	New Noncoding Lytic Transcripts Derived from the Epstein-Barr Virus Latency Origin of Replication, <i>oriP</i> , Are Hyperedited, Bind the Paraspeckle Protein, NONO/p54nrb, and Support Viral Lytic Transcription. Journal of Virology, 2015, 89, 7120-7132.	1.5	46
28	Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents. Oncotarget, 2015, 6, 23358-23371.	0.8	79
29	Androgen receptor variant-7: an important predictive biomarker in castrate resistant prostate cancer. Asian Journal of Andrology, 2015, 17, 439.	0.8	8
30	Castration-resistant prostate cancer: Adaptive responses in the androgen axis. Cancer Treatment Reviews, 2014, 40, 426-433.	3.4	111
31	20(S)-Protopanaxadiol Inhibition of Progression and Growth of Castration-Resistant Prostate Cancer. PLoS ONE, 2014, 9, e111201.	1.1	31
32	Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy. Oncotarget, 2014, 5, 1646-1656.	0.8	166
33	Methylselenol prodrug enhances MDV3100 efficacy for treatment of castrationâ€resistant prostate cancer. International Journal of Cancer, 2013, 133, 2225-2233.	2.3	21
34	20(<i>S</i>)â€protopanaxadiolâ€aglycone downregulation of the fullâ€length and splice variants of androgen receptor. International Journal of Cancer, 2013, 132, 1277-1287.	2.3	31
35	Splicing variants of androgen receptor in prostate cancer. American Journal of Clinical and Experimental Urology, 2013, 1, 18-24.	0.4	8
36	Methylseleninic acid is a novel suppressor of aromatase expression. Journal of Endocrinology, 2012, 212, 199-205.	1.2	12

#	Article	IF	CITATIONS
37	Methylseleninic Acid Enhances Paclitaxel Efficacy for the Treatment of Triple-Negative Breast Cancer. PLoS ONE, 2012, 7, e31539.	1.1	61
38	Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carbohydrate Polymers, 2012, 89, 473-477.	5.1	58
39	Class I and Class II Histone Deacetylases Are Potential Therapeutic Targets for Treating Pancreatic Cancer. PLoS ONE, 2012, 7, e52095.	1.1	41
40	Berberine Suppresses Androgen Receptor Signaling in Prostate Cancer. Molecular Cancer Therapeutics, 2011, 10, 1346-1356.	1.9	83
41	Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition. BMC Cancer, 2010, 10, 418.	1.1	23
42	Activation of FOXO1 is critical for the anticancer effect of methylseleninic acid in prostate cancer cells. Prostate, 2010, 70, 1265-1273.	1.2	17
43	β-Catenin/TCF pathway plays a vital role in selenium induced-growth inhibition and apoptosis in esophageal squamous cell carcinoma (ESCC) cells. Cancer Letters, 2010, 296, 113-122.	3.2	22
44	Telomerase as an Important Target of Androgen Signaling Blockade for Prostate Cancer Treatment. Molecular Cancer Therapeutics, 2010, 9, 2016-2025.	1.9	32
45	KruÌ^ppel-Like Factor 4 Is a Novel Mediator of Selenium in Growth Inhibition. Molecular Cancer Research, 2008, 6, 306-313.	1.5	22
46	Selenium sensitizes MCF-7 breast cancer cells to doxorubicin-induced apoptosis through modulation of phospho-Akt and its downstream substrates. Molecular Cancer Therapeutics, 2007, 6, 1031-1038.	1.9	112
47	Doxorubicin and selenium cooperatively induce fas signaling in the absence of Fas/Fas ligand interaction. Anticancer Research, 2007, 27, 3075-82.	0.5	24
48	Selenium and Cancer Prevention. , 2006, , 573-581.		0
49	Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA). Prostate, 2006, 66, 1070-1075.	1.2	78
50	Augmented suppression of androgen receptor signaling by a combination of α-tocopheryl succinate and methylseleninic acid. Cancer, 2006, 107, 2942-2948.	2.0	6
51	Selenium Disrupts Estrogen Signaling by Altering Estrogen Receptor Expression and Ligand Binding in Human Breast Cancer Cells. Cancer Research, 2005, 65, 3487-3492.	0.4	55
52	Attenuation of Estrogen Receptor α (ERα) Signaling by Selenium in Breast Cancer Cells via Downregulation of ERα Gene Expression. Breast Cancer Research and Treatment, 2005, 92, 239-250.	1.1	28
53	Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers. Molecular Cancer Therapeutics, 2005, 4, 1047-1055.	1.9	67
54	Endoplasmic Reticulum Stress Signal Mediators Are Targets of Selenium Action. Cancer Research, 2005, 65, 9073-9079.	0.4	102

#	Article	IF	CITATIONS
55	Selenium disrupts estrogen receptor α signaling and potentiates tamoxifen antagonism in endometrial cancer cells and tamoxifen-resistant breast cancer cells. Molecular Cancer Therapeutics, 2005, 4, 1239-1249.	1.9	42
56	Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer. Cancer Genomics and Proteomics, 2005, 2, 97-114.	1.0	23
57	Prostate Specific Antigen Expression Is Down-Regulated by Selenium through Disruption of Androgen Receptor Signaling. Cancer Research, 2004, 64, 19-22.	0.4	119
58	Methyl selenium metabolites decrease prostate-specific antigen expression by inducing protein degradation and suppressing androgen-stimulated transcription. Molecular Cancer Therapeutics, 2004, 3, 605-11.	1.9	57
59	Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Research, 2003, 63, 52-9.	0.4	144
60	Cell cycle arrest biomarkers in human lung cancer cells after treatment with selenium in culture. Cancer Epidemiology Biomarkers and Prevention, 2003, 12, 1248-52.	1.1	12
61	Molecular Mechanism of Transcriptional Repression of Gelsolin in Human Breast Cancer Cells. Experimental Cell Research, 2002, 276, 328-336.	1.2	37
62	Conjugated Linoleic Acid Isomers and Mammary Cancer Prevention. Nutrition and Cancer, 2002, 43, 52-58.	0.9	129
63	New concepts in selenium chemoprevention. Cancer and Metastasis Reviews, 2002, 21, 281-289.	2.7	153
64	Identification of molecular targets associated with selenium-induced growth inhibition in human breast cells using cDNA microarrays. Cancer Research, 2002, 62, 708-14.	0.4	94
65	Evidence of a field effect associated with mammary cancer chemoprevention by methylseleninic acid. Anticancer Research, 2002, 22, 27-32.	0.5	12
66	Vaccenic Acid Feeding Increases Tissue Levels of Conjugated Linoleic Acid and Suppresses Development of Premalignant Lesions in Rat Mammary Gland. Nutrition and Cancer, 2001, 41, 91-97.	0.9	113
67	Control of Rat Mammary Epithelium Proliferation by Conjugated Linoleic Acid. Nutrition and Cancer, 2001, 39, 233-238.	0.9	39
68	Concurrent deregulation of gelsolin and cyclin D1 in the majority of human and rodent breast cancers. , 1999, 81, 930-938.		21
69	Concurrent deregulation of gelsolin and cyclin D1 in the majority of human and rodent breast cancers. International Journal of Cancer, 1999, 81, 930-938.	2.3	1