
Zhaohui Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7957447/publications.pdf Version: 2024-02-01

<u> 7наониі Ноц</u>

#	Article	IF	CITATIONS
1	Oxygen vacancy assisted low–temperature synthesis of P–doped Co3O4 with enhanced activity towards oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 894, 162038.	5.5	17
2	Multifunctional sandwich-structured double-carbon-layer modified SnS nanotubes with high capacity and stability for Li-ion batteries. Materials Advances, 2022, 3, 3631-3641.	5.4	20
3	In-situ self-templated preparation of porous core–shell Fe1â^'S@N, S co-doped carbon architecture for highly efficient oxygen reduction reaction. Journal of Energy Chemistry, 2021, 54, 310-317.	12.9	24
4	Prospects of Electrode Materials and Electrolytes for Practical Potassiumâ€Based Batteries. Small Methods, 2021, 5, e2101131.	8.6	129
5	A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability. Journal of Materials Science and Technology, 2020, 44, 229-236.	10.7	37
6	3D N, S-co-doped carbon nanotubes/graphene/MnS ternary hybrid derived from Hummers' method for highly efficient oxygen reduction reaction. Materials Today Energy, 2020, 16, 100402.	4.7	13
7	Defective Lithium Storage Boosts High Rate and Longâ€Life Span of Carbon Fibers. ChemistrySelect, 2019, 4, 5768-5775.	1.5	2
8	Ultrafine CuO nanoparticles decorated activated tube-like carbon as advanced anode for lithium-ion batteries. Electrochimica Acta, 2019, 296, 206-213.	5.2	33
9	Three-dimensional nitrogen-doped carbon nanotubes/carbon nanofragments complexes for efficient metal-free electrocatalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 6158-6166.	7.1	17
10	The Effects of Hydrogenation on Graphitic C ₃ N ₄ Nanosheets for Enhanced Photocatalytic Activity. Particle and Particle Systems Characterization, 2018, 35, 1700038.	2.3	52
11	Facile synthesis of Ni ₃ S ₂ /rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Journal of Materials Research, 2018, 33, 519-527.	2.6	18
12	RGO–RGONRs–Zn2SnO4 Composite with Three-Dimensional Hierarchical Structure for Use in Lithium-Ion Batteries. Journal of Electronic Materials, 2018, 47, 422-429.	2.2	4
13	Facile Synthesis of ZnS/N,S Co-doped Carbon Composite from Zinc Metal Complex for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 704-712.	8.0	108
14	Enhanced electrocatalytic hydrogen evolution activity of nickel foam by low-temperature-oxidation. Journal of Materials Research, 2018, 33, 213-224.	2.6	27
15	Edge-Rich Quasi-Mesoporous Nitrogen-Doped Carbon Framework Derived from Palm Tree Bark Hair for Electrochemical Applications. ACS Applied Materials & Interfaces, 2018, 10, 27047-27055.	8.0	49
16	A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochimica Acta, 2018, 278, 106-113.	5.2	31
17	n/n junctioned g-C ₃ N ₄ for enhanced photocatalytic H ₂ generation. Sustainable Energy and Fuels, 2017, 1, 317-323.	4.9	96
18	Self-assembly of porous CuO nanospheres decorated on reduced graphene oxide with enhanced lithium storage performance. RSC Advances, 2017, 7, 10376-10384.	3.6	41

Zнаониі Hou

#	Article	IF	CITATIONS
19	Graphene-Embedded Co ₃ O ₄ Rose-Spheres for Enhanced Performance in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9662-9668.	8.0	133
20	Graphitic-C ₃ N ₄ nanosheets: synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities. Dalton Transactions, 2017, 46, 10641-10649.	3.3	53
21	A comparative study of different Fe ₃ O ₄ -functionalized carbon-based nanomaterials for the development of electrochemical sensors for bisphenol A. Analytical Methods, 2017, 9, 5509-5517.	2.7	24
22	Platinum Nanoparticles on Interconnected Ni ₃ P/Carbon Nanotube–Carbon Nanofiber Hybrid Supports with Enhanced Catalytic Activity for Fuel Cells. ChemElectroChem, 2017, 4, 109-114.	3.4	7
23	Solvothermal Synthesis of Mesoporous Manganese Sulfide Nanoparticles Supported on Nitrogen and Sulfur Coâ€doped Graphene with Superior Lithium Storage Performance. ChemElectroChem, 2017, 4, 81-89.	3.4	37
24	In situ growth of ultrashort rice-like CuO nanorods supported on reduced graphene oxide nanosheets and their lithium storage performance. Ionics, 2017, 23, 607-616.	2.4	8
25	Zn ₂ SnO ₄ coated reduced graphene oxide nanoribbons with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Research, 2016, 31, 3666-3674.	2.6	7
26	TiO ₂ Nanomaterials as Anode Materials for Lithiumâ€lon Rechargeable Batteries. Energy Technology, 2015, 3, 801-814.	3.8	79
27	Green and large-scale one-pot synthesis of small-sized graphene-bridged manganese dioxide nanowire network as new electrode material for electrochemical sensing. Journal of Sol-Gel Science and Technology, 2015, 76, 341-348.	2.4	10
28	Hierarchical hybrid film of MnO2 nanoparticles/multi-walled fullerene nanotubes–graphene for highly selective sensing of hydrogen peroxide. Talanta, 2015, 141, 86-91.	5.5	30
29	Heteroatom Doped Carbon Nanofibers Synthesized by Chemical Vapor Deposition as Platinum Electrocatalyst Supports for Polymer Electrolyte Membrane Fuel Cells. Electrochimica Acta, 2015, 182, 351-360.	5.2	42
30	A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection. Biosensors and Bioelectronics, 2015, 64, 505-510.	10.1	37
31	Electrochemical co-reduction synthesis of Au/ferrocene–graphene nanocomposites and their application in an electrochemical immunosensor of a breast cancer biomarker. Analytical Methods, 2014, 6, 9078-9084.	2.7	27
32	Multilayer super-short carbon nanotube/reduced graphene oxide architecture for enhanced supercapacitor properties. Journal of Power Sources, 2014, 247, 396-401.	7.8	71
33	Three-dimensional flower-like nickel oxide supported on graphene sheets as electrode material for supercapacitors. Journal of Sol-Gel Science and Technology, 2012, 63, 146-152.	2.4	64
34	Study on the interaction between thiazolopyrimidine analogues and bovine serum albumin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1931-1935.	3.9	4
35	Thermal annealingâ€enhanced bioelectrocatalysis in membraneâ€less glucose/O2 biofuel cell basedâ€on hydrophilic carbon fibresâ€. ChemElectroChem, 0, , .	3.4	1