Kwok Tong Chau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7957035/publications.pdf

Version: 2024-02-01

452 papers

16,981 citations

64 h-index

16451

24258 110 g-index

478 all docs

478 docs citations

times ranked

478

6953 citing authors

#	Article	IF	CITATIONS
1	Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 2008, 55, 2246-2257.	7.9	1,186
2	Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies. Proceedings of the IEEE, 2013, 101, 2409-2427.	21.3	612
3	Overview of power management in hybrid electric vehicles. Energy Conversion and Management, 2002, 43, 1953-1968.	9.2	367
4	An overview of power electronics in electric vehicles. IEEE Transactions on Industrial Electronics, 1997, 44, 3-13.	7.9	353
5	Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles. IEEE Transactions on Magnetics, 2007, 43, 2504-2506.	2.1	325
6	Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energy Conversion and Management, 2009, 50, 1506-1512.	9.2	292
7	Emerging Energy-Efficient Technologies for Hybrid Electric Vehicles. Proceedings of the IEEE, 2007, 95, 821-835.	21.3	287
8	A Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Machine for Wind Power Generation. IEEE Transactions on Industry Applications, 2009, 45, 954-962.	4.9	274
9	A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays. IEEE Transactions on Energy Conversion, 2010, 25, 319-328.	5.2	230
10	A New Efficient Permanent-Magnet Vernier Machine for Wind Power Generation. IEEE Transactions on Magnetics, 2010, 46, 1475-1478.	2.1	220
11	An overview of energy sources for electric vehicles. Energy Conversion and Management, 1999, 40, 1021-1039.	9.2	204
12	Design and analysis of a new doubly salient permanent magnet motor. IEEE Transactions on Magnetics, 2001, 37, 3012-3020.	2.1	185
13	Overview of batteries and battery management for electric vehicles. Energy Reports, 2022, 8, 4058-4084.	5.1	184
14	Field-Oriented Control and Direct Torque Control for Paralleled VSIs Fed PMSM Drives With Variable Switching Frequencies. IEEE Transactions on Power Electronics, 2016, 31, 2417-2428.	7.9	173
15	An Efficient Wind–Photovoltaic Hybrid Generation System Using Doubly Excited Permanent-Magnet Brushless Machine. IEEE Transactions on Industrial Electronics, 2010, 57, 831-839.	7.9	160
16	A Permanent-Magnet Hybrid Brushless Integrated Starter–Generator for Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 2010, 57, 4055-4064.	7.9	159
17	Comparison of Coaxial Magnetic Gears With Different Topologies. IEEE Transactions on Magnetics, 2009, 45, 4526-4529.	2.1	157
18	Integrated Energy Management of Plug-in Electric Vehicles in Power Grid With Renewables. IEEE Transactions on Vehicular Technology, 2014, 63, 3019-3027.	6.3	156

#	Article	IF	Citations
19	Novel permanent magnet motor drives for electric vehicles. IEEE Transactions on Industrial Electronics, 1996, 43, 331-339.	7.9	149
20	Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors. IEEE Transactions on Magnetics, 2000, 36, 339-348.	2.1	149
21	Acoustic noise radiated by PWM-controllel induction machine drives. IEEE Transactions on Industrial Electronics, 2000, 47, 880-889.	7.9	140
22	Static characteristics of a new doubly salient permanent magnet motor. IEEE Transactions on Energy Conversion, 2001, 16, 20-25.	5.2	136
23	Remedial Injected-Harmonic-Current Operation of Redundant Flux-Switching Permanent-Magnet Motor Drives. IEEE Transactions on Industrial Electronics, 2013, 60, 151-159.	7.9	127
24	An Overview of Resonant Circuits for Wireless Power Transfer. Energies, 2017, 10, 894.	3.1	127
25	A new three-phase doubly salient permanent magnet machine for wind power generation. IEEE Transactions on Industry Applications, 2006, 42, 53-60.	4.9	126
26	A Critical Review of Advanced Electric Machines and Control Strategies for Electric Vehicles. Proceedings of the IEEE, 2021, 109, 1004-1028.	21.3	124
27	Design, Analysis, and Control of DC-Excited Memory Motors. IEEE Transactions on Energy Conversion, 2011, 26, 479-489.	5.2	117
28	An Effective Sandwiched Wireless Power Transfer System for Charging Implantable Cardiac Pacemaker. IEEE Transactions on Industrial Electronics, 2019, 66, 4108-4117.	7.9	117
29	Energy Encryption for Wireless Power Transfer. IEEE Transactions on Power Electronics, 2015, 30, 5237-5246.	7.9	111
30	Torque Ripple Minimization of Doubly Salient Permanent-Magnet Motors. IEEE Transactions on Energy Conversion, 2005, 20, 352-358.	5.2	109
31	Sensorless SVPWM-FADTC of a New Flux-Modulated Permanent-Magnet Wheel Motor Based on a Wide-Speed Sliding Mode Observer. IEEE Transactions on Industrial Electronics, 2015, 62, 3143-3151.	7.9	109
32	Homogeneous Wireless Power Transfer for Move-and-Charge. IEEE Transactions on Power Electronics, 2015, 30, 6213-6220.	7.9	107
33	A new battery available capacity indicator for electric vehicles using neural network. Energy Conversion and Management, 2002, 43, 817-826.	9.2	106
34	Development of a New Brushless Doubly Fed Doubly Salient Machine for Wind Power Generation. IEEE Transactions on Magnetics, 2006, 42, 3455-3457.	2.1	106
35	Design and Analysis of Linear Stator Permanent Magnet Vernier Machines. IEEE Transactions on Magnetics, 2011, 47, 4219-4222.	2.1	103
36	Application of Linear Magnetic Gears for Pseudo-Direct-Drive Oceanic Wave Energy Harvesting. IEEE Transactions on Magnetics, 2011, 47, 2624-2627.	2.1	102

#	Article	IF	Citations
37	Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles. IEEE Transactions on Industrial Electronics, 2002, 49, 677-684.	7.9	99
38	Design and Control of a New Double-Stator Cup-Rotor Permanent-Magnet Machine for Wind Power Generation. IEEE Transactions on Magnetics, 2007, 43, 2501-2503.	2.1	99
39	A Transient Cosimulation Approach to Performance Analysis of Hybrid Excited Doubly Salient Machine Considering Indirect Field-Circuit Coupling. IEEE Transactions on Magnetics, 2007, 43, 2558-2560.	2.1	94
40	Design, Modeling, and Analysis of a Brushless Doubly Fed Doubly Salient Machine for Electric Vehicles. IEEE Transactions on Industry Applications, 2008, 44, 727-734.	4.9	93
41	Hybridization of energy sources in electric vehicles. Energy Conversion and Management, 2001, 42, 1059-1069.	9.2	92
42	Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine. IEEE Transactions on Magnetics, 2002, 38, 2382-2384.	2.1	92
43	Design of a New Outer-Rotor Permanent Magnet Hybrid Machine for Wind Power Generation. IEEE Transactions on Magnetics, 2008, 44, 1494-1497.	2.1	91
44	An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking. Energy Conversion and Management, 2011, 52, 641-647.	9.2	91
45	A novel polyphase multipole square-wave permanent magnet motor drive for electric vehicles. IEEE Transactions on Industry Applications, 1994, 30, 1258-1266.	4.9	87
46	Analysis of chaos in current-mode-controlled DC drive systems. IEEE Transactions on Industrial Electronics, 2000, 47, 67-76.	7.9	85
47	Remedial Brushless AC Operation of Fault-Tolerant Doubly Salient Permanent-Magnet Motor Drives. IEEE Transactions on Industrial Electronics, 2010, 57, 2134-2141.	7.9	85
48	Control and operation of a new 8/6-pole doubly salient permanent-magnet motor drive. IEEE Transactions on Industry Applications, 2003, 39, 1363-1371.	4.9	81
49	Flexible Induction Heating Using Magnetic Resonant Coupling. IEEE Transactions on Industrial Electronics, 2017, 64, 1982-1992.	7.9	81
50	Overview of wireless power transfer for electric vehicle charging. , 2013, , .		80
51	Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine. IEEE Transactions on Energy Conversion, 2011, 26, 862-870.	5.2	79
52	A New Switched-Capacitor Boost-Multilevel Inverter Using Partial Charging. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54, 1145-1149.	3.0	77
53	Comparison of Stator-Permanent-Magnet Brushless Machines. IEEE Transactions on Magnetics, 2008, 44, 4405-4408.	2.1	77
54	A Novel Flux-Controllable Vernier Permanent-Magnet Machine. IEEE Transactions on Magnetics, 2011, 47, 4238-4241.	2.1	76

#	Article	IF	CITATIONS
55	Novel wide range speed control of permanent magnet brushless motor drives. IEEE Transactions on Power Electronics, 1995, 10, 539-546.	7.9	75
56	Design and Analysis of Wireless Switched Reluctance Motor Drives. IEEE Transactions on Industrial Electronics, 2019, 66, 245-254.	7.9	75
57	A novel stator doubly fed doubly salient permanent magnet brushless machine. IEEE Transactions on Magnetics, 2003, 39, 3001-3003.	2.1	73
58	Novel Design of Double-Stator Single-Rotor Magnetic-Geared Machines. IEEE Transactions on Magnetics, 2012, 48, 4180-4183.	2.1	72
59	Neural Network-Based Residual Capacity Indicator for Nickel-Metal Hydride Batteries in Electric Vehicles. IEEE Transactions on Vehicular Technology, 2005, 54, 1705-1712.	6.3	70
60	A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system. Energy Conversion and Management, 2004, 45, 1681-1692.	9.2	69
61	Dynamic Performance Evaluation of a Nine-Phase Flux-Switching Permanent-Magnet Motor Drive With Model Predictive Control. IEEE Transactions on Industrial Electronics, 2016, 63, 4539-4549.	7.9	68
62	Comparison of Flux-Switching PM Motors With Different Winding Configurations Using Magnetic Gearing Principle. IEEE Transactions on Magnetics, 2016, 52, 1-8.	2.1	68
63	Spectral analysis of a new six-phase pole-changing induction motor drive for electric vehicles. IEEE Transactions on Industrial Electronics, 2003, 50, 123-131.	7.9	67
64	Power Factor Improvement of a Linear Vernier Permanent-Magnet Machine Using Auxiliary DC Field Excitation. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	67
65	Time-Division Multiplexing Wireless Power Transfer for Separately Excited DC Motor Drives. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	66
66	A novel sliding-mode observer for indirect position sensing of switched reluctance motor drives. IEEE Transactions on Industrial Electronics, 1999, 46, 390-397.	7.9	65
67	Design and analysis of interior-magnet outer-rotor concentric magnetic gears. Journal of Applied Physics, 2009, 105, .	2.5	65
68	Design of high-torque-density double-stator permanent magnet brushless motors. IET Electric Power Applications, 2011, 5, 317.	1.8	65
69	Necrotizing enterocolitis in neonates with symptomatic congenital heart disease. Journal of Pediatrics, 1988, 113, 1044-1049.	1.8	64
70	Hopf Bifurcation and Chaos in Synchronous Reluctance Motor Drives. IEEE Transactions on Energy Conversion, 2004, 19, 296-302.	5.2	64
71	Stator-Flux-Oriented Fault-Tolerant Control of Flux-Switching Permanent-Magnet Motors. IEEE Transactions on Magnetics, 2011, 47, 4191-4194.	2.1	64
72	Experimental stabilization of chaos in a voltage-mode DC drive system. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2000, 47, 1093-1095.	0.1	63

#	Article	IF	CITATIONS
73	Design and Control of a PM Brushless Hybrid Generator for Wind Power Application. IEEE Transactions on Magnetics, 2006, 42, 3497-3499.	2.1	63
74	A new surface-inset, permanent-magnet, brushless DC motor drive for electric vehicles. IEEE Transactions on Magnetics, 2000, 36, 3810-3818.	2.1	62
75	Harmonic Analysis and Comparison of Permanent Magnet Vernier and Magnetic-Geared Machines. IEEE Transactions on Magnetics, 2011, 47, 3649-3652.	2.1	62
76	Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled time-stepping finite-element method. IEEE Transactions on Magnetics, 2002, 38, 1297-1300.	2.1	61
77	Comparison of Fault-Tolerant Operations for Permanent-Magnet Hybrid Brushless Motor Drive. IEEE Transactions on Magnetics, 2010, 46, 1378-1381.	2.1	61
78	An advanced permanent magnet motor drive system for battery-powered electric vehicles. IEEE Transactions on Vehicular Technology, 1996, 45, 180-188.	6.3	60
79	Chaoization of DC Motors for Industrial Mixing. IEEE Transactions on Industrial Electronics, 2007, 54, 2024-2032.	7.9	60
80	Design of Doubly Salient Permanent Magnet Motors With Minimum Torque Ripple. IEEE Transactions on Magnetics, 2009, 45, 4704-4707.	2.1	60
81	Overview of electric machines for electric and hybrid vehicles. International Journal of Vehicle Design, 2014, 64, 46.	0.3	58
82	Analytical Calculation of Magnetic Field in Surface-Inset Permanent Magnet Motors. IEEE Transactions on Magnetics, 2009, 45, 4688-4691.	2.1	57
83	Design of permanent magnets to avoid chaos in pm synchronous machines. IEEE Transactions on Magnetics, 2003, 39, 2995-2997.	2.1	56
84	A Novel Coaxial Magnetic Gear Using Bulk HTS for Industrial Applications. IEEE Transactions on Applied Superconductivity, 2010, 20, 981-984.	1.7	54
85	Analysis, design and experimental verification of a fieldâ€modulated permanentâ€magnet machine for directâ€drive wind turbines. IET Electric Power Applications, 2015, 9, 150-159.	1.8	54
86	Analysis of Tooth-Tip Flux Leakage in Surface-Mounted Permanent Magnet Linear Vernier Machines. IEEE Transactions on Magnetics, 2013, 49, 3949-3952.	2.1	53
87	Design and Analysis of a Stator-Doubly-Fed Doubly-Salient Permanent-Magnet Machine for Automotive Engines. IEEE Transactions on Magnetics, 2006, 42, 3470-3472.	2.1	52
88	Overview of Wireless Charging Technologies for Electric Vehicles. Journal of Asian Electric Vehicles, 2014, 12, 1679-1685.	0.4	52
89	Controllability and Performance of a Nine-Phase FSPM Motor Under Severe Five Open-Phase Fault Conditions. IEEE Transactions on Energy Conversion, 2016, 31, 323-332.	5.2	52
90	Improvement of Electromagnetic Compatibility of Motor Drives Using Chaotic PWM. IEEE Transactions on Magnetics, 2007, 43, 2612-2614.	2.1	51

#	Article	IF	Citations
91	An <i>LCC</i> -Compensated Multiple-Frequency Wireless Motor System. IEEE Transactions on Industrial Informatics, 2019, 15, 6023-6034.	11.3	51
92	Multi-Frequency Multi-Power One-to-Many Wireless Power Transfer System. IEEE Transactions on Magnetics, 2019, 55, 1-9.	2.1	51
93	Performance Analysis of 8/6-Pole Doubly Salient Permanent Magnet Motor. Electric Power Components and Systems, 1999, 27, 1055-1067.	0.1	49
94	Anti-control of chaos of a permanent magnet DC motor system for vibratory compactors. Chaos, Solitons and Fractals, 2008, 36, 694-708.	5.1	49
95	Design and Analysis of Quasi-Omnidirectional Dynamic Wireless Power Transfer for Fly-and-Charge. IEEE Transactions on Magnetics, 2019, 55, 1-9.	2.1	49
96	Transient analysis of coaxial magnetic gears using finite element comodeling. Journal of Applied Physics, 2008, 103, 07F101.	2.5	47
97	An efficient wireless power transfer system with security considerations for electric vehicle applications. Journal of Applied Physics, 2014, 115, .	2.5	47
98	Linear primary permanent magnet vernier machine for wave energy conversion. IET Electric Power Applications, 2015, 9, 203-212.	1.8	47
99	Chaotic Speed Synchronization Control of Multiple Induction Motors Using Stator Flux Regulation. IEEE Transactions on Magnetics, 2012, 48, 4487-4490.	2.1	46
100	Modern electric machines and drives for wind power generation: A review of opportunities and challenges. IET Renewable Power Generation, 2021, 15, 1864-1887.	3.1	46
101	Subharmonics and chaos in switched reluctance motor drives. IEEE Transactions on Energy Conversion, 2002, 17, 73-78.	5. 2	45
102	A Novel HTS PM Vernier Motor for Direct-Drive Propulsion. IEEE Transactions on Applied Superconductivity, 2011, 21, 1175-1179.	1.7	45
103	Comparison of Linear Primary Permanent Magnet Vernier Machine and Linear Vernier Hybrid Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	45
104	Design and Analysis of a Cost-Effective Magnetless Multiphase Flux-Reversal DC-Field Machine for Wind Power Generation. IEEE Transactions on Energy Conversion, 2015, 30, 1565-1573.	5.2	45
105	Control and operation of fault-tolerant flux-switching permanent-magnet motor drive with second harmonic current injection. IET Electric Power Applications, 2012, 6, 707.	1.8	44
106	Overview of Thermoelectric Generation for Hybrid Vehicles. Journal of Asian Electric Vehicles, 2008, 6, 1119-1124.	0.4	43
107	A Wireless Servo Motor Drive With Bidirectional Motion Capability. IEEE Transactions on Power Electronics, 2019, 34, 12001-12010.	7.9	43
108	Analysis of Doubly Salient Memory Motors Using Preisach Theory. IEEE Transactions on Magnetics, 2009, 45, 4676-4679.	2.1	42

#	Article	IF	CITATIONS
109	Quantitative Analysis of Mutual Inductance for Optimal Wireless Power Transfer via Magnetic Resonant Coupling. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	42
110	Cost-Effectiveness Comparison of Coaxial Magnetic Gears With Different Magnet Materials. IEEE Transactions on Magnetics, 2014, 50, 821-824.	2.1	42
111	Full-Range Soft-Switching Pulse Frequency Modulated Wireless Power Transfer. IEEE Transactions on Power Electronics, 2020, 35, 6533-6547.	7.9	42
112	Design and Analysis of a HTS Brushless Doubly-Fed Doubly-Salient Machine. IEEE Transactions on Applied Superconductivity, 2011, 21, 1119-1122.	1.7	41
113	Design and control of a flux-controllable stator-permanent magnet brushless motor drive. Journal of Applied Physics, 2008, 103, 07F134.	2.5	40
114	Design and Analysis of Wireless Ballastless Fluorescent Lighting. IEEE Transactions on Industrial Electronics, 2019, 66, 4065-4074.	7.9	40
115	Estimation of battery available capacity under variable discharge currents. Journal of Power Sources, 2002, 103, 180-187.	7.8	39
116	A flux-mnemonic permanent magnet brushless motor for electric vehicles. Journal of Applied Physics, 2008, 103, 07F103.	2.5	39
117	Improvement of Electromagnetic Compatibility of Motor Drives Using Hybrid Chaotic Pulse Width Modulation. IEEE Transactions on Magnetics, 2011, 47, 4018-4021.	2.1	38
118	A fast and exact time-domain simulation of switched-mode power regulators. IEEE Transactions on Industrial Electronics, 1992, 39, 341-350.	7.9	37
119	Chaos in voltage-mode controlled DC drive systems. International Journal of Electronics, 1999, 86, 857-874.	1.4	37
120	Analysis of Eddy-Current Loss in a Double-Stator Cup-Rotor PM Machine. IEEE Transactions on Magnetics, 2008, 44, 4401-4404.	2.1	37
121	Simulation of a Tubular Linear Magnetic Gear Using HTS Bulks for Field Modulation. IEEE Transactions on Applied Superconductivity, 2011, 21, 1167-1170.	1.7	36
122	A New Flux-Mnemonic Dual-Magnet Brushless Machine. IEEE Transactions on Magnetics, 2011, 47, 4223-4226.	2.1	36
123	A new DC micro-grid system using renewable energy and electric vehicles for smart energy delivery. , $2010, \ldots$		35
124	A Linear Doubly-Salient HTS Machine for Wave Energy Conversion. IEEE Transactions on Applied Superconductivity, 2011, 21, 1109-1113.	1.7	35
125	Design and Analysis of an Electronic-Geared Magnetless Machine for Electric Vehicles. IEEE Transactions on Industrial Electronics, 2016, 63, 6705-6714.	7.9	35
126	Design, Analysis, and Implementation of Wireless Shaded-Pole Induction Motors. IEEE Transactions on Industrial Electronics, 2021, 68, 6493-6503.	7.9	34

#	Article	IF	Citations
127	Development of a new brushless doubly-fed doubly-salient machine for wind power generation. , 2006, , .		33
128	A Linear Stator Permanent Magnet Vernier HTS Machine for Wave Energy Conversion. IEEE Transactions on Applied Superconductivity, 2012, 22, 5202505-5202505.	1.7	33
129	Move-and-Charge System for Automatic Guided Vehicles. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	33
130	Analysis of electromagnetic and thermal fields for induction motors during starting. IEEE Transactions on Energy Conversion, 1994, 9, 53-60.	5.2	32
131	A new battery capacity indicator for nickel–metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system. Energy Conversion and Management, 2003, 44, 2059-2071.	9.2	32
132	Effective Charging Method for Ultracapacitors. Journal of Asian Electric Vehicles, 2005, 3, 771-776.	0.4	32
133	Quantitative comparison of double-stator and traditional permanent magnet brushless machines. Journal of Applied Physics, 2009, 105, 07F105.	2.5	32
134	Efficiency Optimization of a Permanent-Magnet Hybrid Brushless Machine Using DC Field Current Control. IEEE Transactions on Magnetics, 2009, 45, 4652-4655.	2.1	32
135	Stationary and mobile battery energy storage systems for smart grids. , 2011, , .		32
136	Transient Stability Analysis of SMES for Smart Grid With Vehicle-to-Grid Operation. IEEE Transactions on Applied Superconductivity, 2012, 22, 5701105-5701105.	1.7	32
137	Quantitative Comparison and Analysis of Magnetless Machines With Reluctance Topologies. IEEE Transactions on Magnetics, 2013, 49, 3969-3972.	2.1	32
138	Intraoperative TEE assessment of ventricular septal defect with aortic regurgitation. Annals of Thoracic Surgery, 1996, 61, 854-860.	1.3	31
139	New split-winding doubly salient permanent magnet motor drive. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39, 202-210.	4.7	31
140	Modeling, analysis, and experimentation of chaos in a switched reluctance drive system. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2003, 50, 712-716.	0.1	31
141	A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles. Energies, 2014, 7, 1483-1499.	3.1	31
142	A New Magnetless Flux-Reversal HTS Machine for Direct-Drive Application. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	31
143	Overview of magnetless brushless machines. IET Electric Power Applications, 2018, 12, 1117-1125.	1.8	31
144	Computer-aided modeling of quasi-resonant converters in the presence of parasitic losses by using the MISSCO concept. IEEE Transactions on Industrial Electronics, 1991, 38, 454-461.	7.9	30

#	Article	IF	Citations
145	Neuro-fuzzy speed tracking control of traveling-wave ultrasonic motor drives using direct pulsewidth modulation. IEEE Transactions on Industry Applications, 2003, 39, 1061-1069.	4.9	30
146	Dual-Mode Operation of DC-Excited Memory Motors Under Flux Regulation. IEEE Transactions on Industry Applications, 2011, 47, 2031-2041.	4.9	30
147	Comparison and Analysis of Flux-Switching Permanent-Magnet Double-Rotor Machine With 4QT Used for HEV. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	30
148	Wireless DC Motor Drives with Selectability and Controllability. Energies, 2017, 10, 49.	3.1	30
149	A Wireless Dimmable Lighting System Using Variable-Power Variable-Frequency Control. IEEE Transactions on Industrial Electronics, 2020, 67, 8392-8404.	7.9	30
150	A Double-Rotor Flux-Switching Permanent-Magnet Motor for Electric Vehicles With Magnetic Differential. IEEE Transactions on Industrial Electronics, 2021, 68, 1004-1015.	7.9	30
151	Wireless Power and Drive Transfer for Piping Network. IEEE Transactions on Industrial Electronics, 2022, 69, 2345-2356.	7.9	30
152	A neural network controller for switching power converters. , 0, , .		29
153	A flux-mnemonic permanent magnet brushless machine for wind power generation. Journal of Applied Physics, 2009, 105, .	2.5	29
154	Performance Analysis of a Flux-Concentrating Field-Modulated Permanent-Magnet Machine for Direct-Drive Applications. IEEE Transactions on Magnetics, 2015, 51, 1-11.	2.1	29
155	Modular inductive power transmission system for high misalignment electric vehicle application. Journal of Applied Physics, 2015, 117, .	2.5	29
156	Research on a Single Phase-Loss Fault-Tolerant Control Strategy for a New Flux-Modulated Permanent-Magnet Compact In-Wheel Motor. IEEE Transactions on Energy Conversion, 2016, 31, 658-666.	5.2	29
157	A new zero-voltage switching DC/DC boost converter. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29, 125-134.	4.7	28
158	An integrated magnetic-geared permanent-magnet in-wheel motor drive for electric vehicles. , 2008, , .		28
159	Torque ripple minimization of flux-controllable stator-permanent-magnet brushless motors using harmonic current injection. Journal of Applied Physics, 2009, 105, 07F102.	2.5	27
160	Servo Position Control of Ultrasonic Motors Using Fuzzy Neural Network. Electric Power Components and Systems, 2001, 29, 229-246.	1.8	26
161	New fault-tolerant flux-mnemonic doubly-salient permanent-magnet motor drive. IET Electric Power Applications, 2011, 5, 393.	1.8	26
162	Performance and Cost Comparison of Permanent-Magnet Vernier Machines. IEEE Transactions on Applied Superconductivity, 2012, 22, 5202304-5202304.	1.7	26

#	Article	IF	CITATIONS
163	A High-Torque Magnetless Axial-Flux Doubly Salient Machine for In-Wheel Direct Drive Applications. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	26
164	Pulse-Width-Modulation-Based Electromagnetic Interference Mitigation of Bidirectional Grid-Connected Converters for Electric Vehicles. IEEE Transactions on Smart Grid, 2017, 8, 2803-2812.	9.0	26
165	A Finite Element–Analytical Method for Electromagnetic Field Analysis of Electric Machines With Free Rotation. IEEE Transactions on Magnetics, 2006, 42, 3392-3394.	2.1	25
166	Quantitative Comparison of Double-Stator Permanent Magnet Vernier Machines With and Without HTS Bulks. IEEE Transactions on Applied Superconductivity, 2012, 22, 5202405-5202405.	1.7	25
167	A Hybrid-Excited Vernier Permanent Magnet Machine Using Homopolar Topology. IEEE Transactions on Magnetics, 2017, 53, 1-7.	2.1	25
168	Single-Source Multiple-Coil Homogeneous Induction Heating. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	25
169	Accurate Position Detection in Wireless Power Transfer Using Magnetoresistive Sensors for Implant Applications. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	25
170	Design of permanent magnet brushless motors with asymmetric air gap for electric vehicles. Journal of Applied Physics, 2006, 99, 08R322.	2.5	24
171	Design and Analysis of a HTS Vernier PM Machine. IEEE Transactions on Applied Superconductivity, 2010, 20, 1055-1059.	1.7	24
172	Design of electrical machines by the finite element method using distributed computing. Computers in Industry, 1991, 17, 367-374.	9.9	23
173	Switching characteristics and efficiency improvement with auxiliary resonant snubber based soft-switching inverters. , 0, , .		23
174	Design and Analysis of an Integrated Halbach-magnetic-geared Permanent-magnet Motor for Electric Vehicles. Journal of Asian Electric Vehicles, 2009, 7, 1213-1219.	0.4	23
175	Design and Analysis of a Novel Linear Transverse Flux Permanent Magnet Motor Using HTS Magnetic Shielding. IEEE Transactions on Applied Superconductivity, 2010, 20, 1106-1109.	1.7	23
176	An improved coaxial magnetic gear using flux focusing., 2011,,.		23
177	Design and Analysis of a HTS Flux-Switching Machine for Wind Energy Conversion. IEEE Transactions on Applied Superconductivity, 2013, 23, 5000904-5000904.	1.7	23
178	Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine. Energies, 2014, 7, 1539-1554.	3.1	23
179	Hybrid Frequency Pacing for High-Order Transformed Wireless Power Transfer. IEEE Transactions on Power Electronics, 2021, 36, 1157-1170.	7.9	23
180	Modeling of electric vehicle chargers. , 0, , .		22

#	Article	IF	Citations
181	Battery Sizing for Plug-in Hybrid Electric Vehicles. Journal of Asian Electric Vehicles, 2006, 4, 899-904.	0.4	22
182	Design and analysis of a transverse flux permanent-magnet machine using three-dimensional scalar magnetic potential finite element method. Journal of Applied Physics, 2008, 103, 07F107.	2.5	22
183	Loss Analysis of Permanent Magnet Hybrid Brushless Machines With and Without HTS Field Windings. IEEE Transactions on Applied Superconductivity, 2010, 20, 1077-1080.	1.7	22
184	Analysis and Stabilization of Chaos in the Electric-Vehicle Steering System. IEEE Transactions on Vehicular Technology, 2013, 62, 118-126.	6.3	22
185	Pure electric vehicles., 2014,, 655-684.		22
186	Design and Analysis of a New HTS Axial-Field Flux-Switching Machine. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	22
187	Pole-Changing Flux-Weakening DC-Excited Dual-Memory Machines for Electric Vehicles. IEEE Transactions on Energy Conversion, 2016, 31, 27-36.	5.2	22
188	Quantitative Comparison of Novel Dual-PM Linear Motors for Ropeless Elevator System. IEEE Transactions on Magnetics, 2018, 54, 1-6.	2.1	22
189	High-Order Compensated Wireless Power Transfer for Dimmable Metal Halide Lamps. IEEE Transactions on Power Electronics, 2020, 35, 6269-6279.	7.9	22
190	Spectral modeling of switched-mode power converters. IEEE Transactions on Industrial Electronics, 1994, 41, 441-450.	7.9	21
191	Permanent magnet brushless drives. IEEE Industry Applications Magazine, 1998, 4, 16-22.	0.4	21
192	Bidirectional soft-switching converter-fed DC motor drives. , 0, , .		21
193	Design and analysis of a novel stator–doubly-fed doubly salient motor for electric vehicles. Journal of Applied Physics, 2005, 97, 10Q508.	2.5	21
194	Design and Implementation of a New Thermoelectric-Photovoltaic Hybrid Energy System for Hybrid Electric Vehicles. Electric Power Components and Systems, 2011, 39, 511-525.	1.8	21
195	Multiple-receptor wireless power transfer for magnetic sensors charging on Mars via magnetic resonant coupling. Journal of Applied Physics, 2015, 117, .	2.5	21
196	Design and Analysis of a New Bipolar-Flux DSPM Linear Machine. IEEE Transactions on Energy Conversion, 2018, 33, 2081-2090.	5.2	21
197	Wireless Energy-On-Demand Using Magnetic Quasi-Resonant Coupling. IEEE Transactions on Power Electronics, 2020, 35, 9057-9069.	7.9	21
198	A software tool for learning the dynamic behavior of power electronics circuits. IEEE Transactions on Education, 1996, 39, 50-55.	2.4	20

#	Article	IF	Citations
199	SMES Control for Power Grid Integrating Renewable Generation and Electric Vehicles. IEEE Transactions on Applied Superconductivity, 2012, 22, 5701804-5701804.	1.7	20
200	Mechanical Offset for Torque Ripple Reduction for Magnetless Double-Stator Doubly Salient Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	20
201	A Switched-Capacitorless Energy-Encrypted Transmitter for Roadway-Charging Electric Vehicles. IEEE Transactions on Magnetics, 2018, 54, 1-6.	2.1	20
202	Servo Speed Control of Traveling-Wave Ultrasonic Motors Using Pulse Width Modulation. Electric Power Components and Systems, 2001, 29, 707-722.	1.8	19
203	A Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Machine for Wind Power Generation. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	19
204	Magnetic Vibration Analysis of a New DC-Excited Multitoothed Switched Reluctance Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	19
205	A Superconducting Vernier Motor for Electric Ship Propulsion. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.7	19
206	Output-Controllable Efficiency-Optimized Wireless Power Transfer Using Hybrid Modulation. IEEE Transactions on Industrial Electronics, 2022, 69, 4627-4636.	7.9	19
207	Wireless Energy Trading in Traffic Internet. IEEE Transactions on Power Electronics, 2022, 37, 4831-4841.	7.9	19
208	Design and analysis of a new permanent magnet brushless DC machine. IEEE Transactions on Magnetics, 2000, 36, 3353-3356.	2.1	18
209	Design and analysis of a new multiphase polygonal-winding permanent-magnet brushless DC machine. IEEE Transactions on Magnetics, 2002, 38, 3258-3260.	2.1	18
210	Chaotification of Induction Motor Drives under Periodic Speed Command. Electric Power Components and Systems, 2003, 31, 1083-1099.	1.8	18
211	Optimal Control Framework and Scheme for Integrating Plug-in Hybrid Electric Vehicles into Grid. Journal of Asian Electric Vehicles, 2011, 9, 1473-1481.	0.4	18
212	Design Principles of Permanent Magnet Dual-Memory Machines. IEEE Transactions on Magnetics, 2012, 48, 3234-3237.	2.1	18
213	Fault Diagnosis of Power Components in Electric Vehicles. Journal of Asian Electric Vehicles, 2013, 11, 1659-1666.	0.4	18
214	Quantitative comparison of dynamic flux distribution of magnetic couplers for roadway electric vehicle wireless charging system. Journal of Applied Physics, 2014, 115, .	2.5	18
215	Investigation of energy harvesting for magnetic sensor arrays on Mars by wireless power transmission. Journal of Applied Physics, 2014, 115, .	2.5	18
216	Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird. Journal of Applied Physics, 2015, 117, .	2.5	18

#	Article	IF	CITATIONS
217	Design and analysis of a new parallel-hybrid-excited linear vernier machine for oceanic wave power generation. Applied Energy, 2017, 208, 878-888.	10.1	18
218	All-utensil domestic induction heating system. Energy Conversion and Management, 2019, 195, 1035-1043.	9.2	18
219	Wireless Shaded-Pole Induction Motor With Half-Bridge Inverter and Dual-Frequency Resonant Network. IEEE Transactions on Power Electronics, 2021, 36, 13536-13545.	7.9	18
220	Power electronics challenges in electric vehicles. , 0, , .		17
221	A new class of pulsewidth-modulated multi-resonant converters using resonant inductor freewheeling. International Journal of Electronics, 1994, 77, 703-714.	1.4	17
222	A new two-quadrant zero-current transition converter for DC motor drives. International Journal of Electronics, 2001, 88, 719-735.	1.4	17
223	Performance Analysis of a New Dual-Inverter Pole-Changing Induction Motor Drive for Electric Vehicles. Electric Power Components and Systems, 2002, 30, 11-29.	1.8	17
224	Design, Analysis, and Experimentation of Chaotic Permanent Magnet DC Motor Drives for Electric Compaction. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56, 245-249.	3.0	17
225	Design and Analysis of a New Parallel-Hybrid-Excited Machine With Harmonic-Shift Structure. IEEE Transactions on Industrial Electronics, 2020, 67, 1759-1770.	7.9	17
226	An Integrated Wireless Motor System Using Laminated Magnetic Coupler and Commutative-Resonant Control. IEEE Transactions on Industrial Electronics, 2022, 69, 4342-4352.	7.9	17
227	Novel wide range speed control of permanent magnet brushless motor drives. , 0, , .		16
228	Chaotic behavior in a simple DC drive. , 0, , .		16
229	Design and Analysis of a New Multitoothed Magnetless Doubly Salient Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	16
230	A positioning-tolerant wireless charging system for roadway-powered electric vehicles. Journal of Applied Physics, 2015, 117, .	2.5	16
231	All-Metal Domestic Induction Heating Using Single-Frequency Double-Layer Coils. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	16
232	Design and Analysis of Double-Layer Electromagnetic Field Limiter for Wireless Rechargeable Medical Implants. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	16
233	Selective Wireless Power Transfer Using Magnetic Field Editing. IEEE Transactions on Power Electronics, 2021, 36, 2710-2719.	7.9	16
234	A new two-quadrant zero-voltage transition converter for DC motor drives. International Journal of Electronics, 1999, 86, 217-231.	1.4	15

#	Article	IF	Citations
235	A new soft-switching vector control approach for resonant snubber inverters. International Journal of Electronics, 1999, 86, 101-115.	1.4	15
236	Performance Analysis of Split-Winding Doubly Salient Permanent Magnet Motor for Wide Speed Operation. Electric Power Components and Systems, 2000, 28, 277-288.	0.1	15
237	A permanent-magnet hybrid in-wheel motor drive for electric vehicles. , 2008, , .		15
238	Control of chaotic vibration in automotive wiper systems. Chaos, Solitons and Fractals, 2009, 39, 168-181.	5.1	15
239	Eddy-Current Analysis of Double-Stator Inset-Type Permanent Magnet Brushless Machines. IEEE Transactions on Applied Superconductivity, 2010, 20, 1097-1101.	1.7	15
240	Design of a High-speed Superconducting Bearingless Machine for Flywheel Energy Storage Systems. IEEE Transactions on Applied Superconductivity, 2014, , 1-1.	1.7	15
241	Design and Analysis of a New Magnetic Gear With Multiple Gear Ratios. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	15
242	A New High-Temperature Superconducting Vernier Permanent-Magnet Machine for Wind Turbines. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	15
243	A Dual-Resonant Topology-Reconfigurable Inverter for All-Metal Induction Heating. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 3818-3829.	5.4	15
244	Computer simulation and analysis of a new polyphase multipole motor drive. IEEE Transactions on Industrial Electronics, 1993, 40, 570-576.	7.9	14
245	Nonlinear identification of power electronic systems. , 0, , .		14
246	Optimal efficiency control of PM hybrid motor drives for electrical vehicles. , 0, , .		14
247	EVSIM â€" A PC-based Simulation Tool for an Electric Vehicle Technology Course. International Journal of Electrical Engineering and Education, 2000, 37, 167-179.	0.8	14
248	Application of chaotic-motion motors to industrial mixing processes., 0, , .		14
249	Design and Analysis of a Double-Stator Cup-Rotor PM Integrated-Starter-Generator. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006, , .	0.0	14
250	A New Compliance Control Approach for Traveling-Wave Ultrasonic Motors. IEEE Transactions on Industrial Electronics, 2008, 55, 302-311.	7.9	14
251	Comparative Analysis and Experimental Verification of an Effective Permanent-Magnet Vernier Machine. IEEE Transactions on Magnetics, 2015, 51, 1-9.	2.1	14
252	A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction. Renewable Energy, 2017, 105, 199-208.	8.9	14

#	Article	IF	Citations
253	A Novel Quasi-3D Analytical Model for Axial Flux Motors Considering Magnetic Saturation. IEEE Transactions on Energy Conversion, 2022, 37, 1358-1368.	5.2	14
254	Maximum Power Tracking for Magnetic Field Editing-Based Omnidirectional Wireless Power Transfer. IEEE Transactions on Power Electronics, 2022, 37, 12901-12912.	7.9	14
255	Design of Permanent Magnets to Avoid Chaos in Doubly Salient PM Machines. IEEE Transactions on Magnetics, 2004, 40, 3048-3050.	2.1	13
256	Design and Analysis of Magnet Proportioning for Dual-Memory Machines. IEEE Transactions on Applied Superconductivity, 2012, 22, 4905404-4905404.	1.7	13
257	Power Compensation and Power Quality Improvement Based on Multiple-Channel Current Source Converter Fed HT SMES. IEEE Transactions on Applied Superconductivity, 2012, 22, 5701204-5701204.	1.7	13
258	Development of Non-rare-earth Magnetic Gears for Electric Vehicles. Journal of Asian Electric Vehicles, 2012, 10, 1607-1613.	0.4	13
259	Design and analysis of a dualâ€mode fluxâ€switching doubly salient DCâ€field magnetless machine for wind power harvesting. IET Renewable Power Generation, 2015, 9, 908-915.	3.1	13
260	Design of a new nonâ€rareâ€earth magnetic variable gear for hybrid vehicular propulsion system. IET Electrical Systems in Transportation, 2016, 6, 153-162.	2.4	13
261	An overview of electric vehicles-challenges and opportunities. , 0, , .		12
262	Speed Control of Traveling-wave Ultrasonic Motors Using a Practical Modeling Approach. Electric Power Components and Systems, 2007, 35, 411-428.	1.8	12
263	A New Hybrid-Structure Machine With Multimode Fault-Tolerant Operation for Mars Rover. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	12
264	Compact Wireless Motor Drive Using Orthogonal Bipolar Coils for Coordinated Operation of Robotic Arms. IEEE Transactions on Magnetics, 2022, 58, 1-8.	2.1	12
265	Pulse Frequency Modulation for Parity-Time-Symmetric Wireless Power Transfer System. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	12
266	Electric Vehicle Technology â€" A Timely Course for Electrical Engineering Students. International Journal of Electrical Engineering and Education, 1998, 35, 212-220.	0.8	11
267	Harmonic Reduction in DC-Link Current of a Dual-Inverter Pole-Changing Induction Motor Drive for Electric Vehicles. Electric Power Components and Systems, 2003, 31, 1063-1081.	1.8	11
268	Load Forecasting of Hybrid Electric Vehicles Under Real Time Pricing. Journal of Asian Electric Vehicles, 2005, 3, 815-818.	0.4	11
269	A Linear Magnetic-geared Free-piston Generator for Range-extended Electric Vehicles. Journal of Asian Electric Vehicles, 2010, 8, 1345-1349.	0.4	11
270	Doubly Salient Dual-PM Linear Machines for Regenerative Shock Absorbers. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	11

#	Article	IF	Citations
271	A New Parallel-Hybrid-Excited Permanent-Magnet Machine With Harmonic-Differential Effect for Electric Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 12734-12750.	6.3	11
272	Analysis of Multi-Coil Omnidirectional Energy Harvester. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	11
273	New Methods of Measuring Inductance of Doubly Salient Permanent Magnet Motors. Electric Power Components and Systems, 2002, 30, 1127-1135.	1.8	10
274	A novel three-phase doubly salient permanent magnet machine for wind power generation. , 0, , .		10
275	Design of permanent magnets to chaoize doubly salient permanent magnet motors for electric compaction. Journal of Applied Physics, 2006, 99, 08R306.	2.5	10
276	A double-stator permanent magnet brushless machine system for electric variable transmission in hybrid electric vehicles. , $2010, .$		10
277	Fault tolerant control of harmonic injected nine-phase flux switching permanent magnet motor drive system. , 2014, , .		10
278	Design and Analysis of a Flux-Controllable Linear Variable Reluctance Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	10
279	Overview of Electric Vehicle Machines - From Tesla to Tesla, and Beyond. , 2016, , .		10
280	Constant-frequency multi-resonant converter-fed DC motor drives. , 0, , .		9
281	Early implantation of multiple spring coils for severe haemolysis after incomplete transcatheter occlusion of persistent arterial duct Heart, 1997, 77, 477-478.	2.9	9
282	Analysis of Chaotic Behavior in Switched Reluctance Motors Using Voltage PWM Regulation. Electric Power Components and Systems, 2001, 29, 211-227.	1.8	9
283	A Novel Electronic-continuously Variable Transmission Propulsion System Using Coaxial Magnetic Gearing for Hybrid Electric Vehicles. Journal of Asian Electric Vehicles, 2009, 7, 1291-1296.	0.4	9
284	A new modular flux-switching permanent-magnet machine using fault-tolerant teeth. , 2010, , .		9
285	Control and Performance Evaluation of Multiphase FSPM Motor in Low-Speed Region for Hybrid Electric Vehicles. Energies, 2015, 8, 10335-10353.	3.1	9
286	Modeling of a Field-Modulated Permanent-Magnet Machine. Energies, 2016, 9, 1078.	3.1	9
287	Development of Reliable Gearless Motors for Electric Vehicles. IEEE Transactions on Magnetics, 2017, 53, 1-8.	2.1	9
288	Low-Frequency Medium Power Capacitor-Free Self-Resonant Wireless Power Transfer. IEEE Transactions on Industrial Electronics, 2021, 68, 10521-10533.	7.9	9

#	Article	IF	CITATIONS
289	Decoupled-Double D Coils Based Dual-Resonating-Frequency Compensation Topology for Wireless Power Transfer. IEEE Transactions on Magnetics, 2022, 58, 1-7.	2.1	9
290	Real-time implementation of an on-line trained neural network controller for power electronics converters. , 0, , .		8
291	A new zero-voltage-transition converter for switched reluctance motor drives. , 0, , .		8
292	Chaotification of permanent-magnet synchronous motor drives using time-delay feedback., 0,,.		8
293	A New Switched-capacitor Inverter for Electric Vehicles. Journal of Asian Electric Vehicles, 2006, 4, 905-909.	0.4	8
294	Design and Control of a Doubly-Excited Permanent-Magnet Brushless Integrated-Starter-Generator for Hybrid Electric Vehicles. Conference Record - IAS Annual Meeting (IEEE Industry Applications) Tj ETQq0 0 0 rg	;BTd @ verlo	ocks10 Tf 50 !
295	A Permanent-magnet double-stator integrated-starter-generator for hybrid electric vehicles. , 2008, , .		8
296	Review of Electronic-continuously Variable Transmission Propulsion System for Full Hybrid Electric Vehicles. Journal of Asian Electric Vehicles, 2009, 7, 1297-1302.	0.4	8
297	Overview of Power Networks in Hybrid Electric Vehicles. Journal of Asian Electric Vehicles, 2010, 8, 1371-1377.	0.4	8
298	Multilayer framework for vehicle-to-grid operation. , 2010, , .		8
299	New Approach for Pole-Changing With Dual-Memory Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	8
300	Design and Analysis of a New Magnetic-Geared Memory Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	8
301	Design and Analysis of Electromagnetic Gears With Variable Gear Ratios. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	8
302	A Phase-Decoupled Flux-Reversal Linear Generator for Low-Speed Oscillatory Energy Conversion Using Impedance Matching Strategy. IEEE Transactions on Industrial Electronics, 2018, 65, 7590-7599.	7.9	8
303	Computer graphics aided design for an advanced electrical motor. Computer-Aided Engineering Journal, 1990, 7, 72.	0.2	8
304	New constant-frequency multiresonant boost convertor. Electronics Letters, 1994, 30, 101-102.	1.0	7
305	Modeling of subharmonics and chaos in DC motor drives. , 0, , .		7
306	Dynamic bifurcation in DC drives. , 0, , .		7

#	Article	IF	CITATIONS
307	A new doubly salient permanent magnet motor. , 0, , .		7
308	Design of a novel phase-decoupling permanent magnet brushless ac motor. Journal of Applied Physics, 2005, 97, 10Q515.	2.5	7
309	Microstepping control of ultrasonic stepping motors. IEEE Transactions on Industry Applications, 2006, 42, 436-442.	4.9	7
310	Application of chaotic modulation to ac motors for harmonic suppression. , 2006, , .		7
311	Design and Analysis of a Chaotic PWM Inverter for Electric Vehicles. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	7
312	An optimal solar-thermoelectric hybrid energy system for hybrid electric vehicles. , 2008, , .		7
313	Design and Analysis of a Magnetless Flux-Switching DC-Excited Machine for Wind Power Generation. Journal of International Council on Electrical Engineering, 2014, 4, 80-87.	0.4	7
314	Wireless Power and Drive Transfer Using Orthogonal Bipolar Couplers and Separately Excited Modulation. IEEE Transactions on Industrial Electronics, 2022, 69, 3492-3502.	7.9	7
315	Soft-switching vector control for resonant snubber based inverters. , 0, , .		6
316	Cutaneous oozing of lymphatic fluid after interventional cardiac catheterization in a patient with Noonan syndrome. Catheterization and Cardiovascular Interventions, 2000, 51, 441-443.	1.7	6
317	Analysis of Chaotic Behavior in Switched Reluctance Motors Using Current Hysteresis Regulation. Electric Power Components and Systems, 2002, 30, 607-624.	1.8	6
318	A new design method and half-step operation for ultrasonic stepping motors. IEEE Transactions on Industry Applications, 2003, 39, 953-960.	4.9	6
319	Torque Ripple Minimization of Four-Phase Doubly Salient Permanent Magnet Motors Using Two-Phase Operation. Electric Power Components and Systems, 2006, 34, 401-415.	1.8	6
320	Design and Control of a Double-Stator Permanent-Magnet Motor Drive for Electric Vehicles. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	6
321	A permanent-magnet flux-mnemonic integrated-starter-generator for hybrid electric vehicles. , 2008, , .		6
322	Chaoization of Permanent Magnet Synchronous Motors Using Stator Flux Regulation. IEEE Transactions on Magnetics, 2008, 44, 4151-4154.	2.1	6
323	An automotive thermoelectric-photovoltaic hybrid energy system. , 2010, , .		6
324	Simulation of a linear permanent magnet vernier machine for direct-drive wave power generation. , $2011, \dots$		6

#	Article	IF	Citations
325	Theory and comparison of the linear stator permanent magnet vernier machine. , 2011, , .		6
326	Genetic Algorithm Based Cost-emission Optimization of Unit Commitment Integrating with Gridable Vehicles. Journal of Asian Electric Vehicles, 2012, 10, 1567-1573.	0.4	6
327	Comparison of flux-switching machines with and without permanent magnets. Chinese Journal of Electrical Engineering, 2015, 1, 78-84.	3.4	6
328	Energy-security-based contactless battery charging system for roadway-powered electric vehicles. , 2015, , .		6
329	Development of Doubly Salient Permanent Magnet Motors for Electric Vehicles. Journal of Asian Electric Vehicles, 2005, 3, 689-695.	0.4	6
330	A NEW PWM ALGORITHM FOR BATTERY-SOURCE THREE-PHASE INVERTERS. Electric Power Components and Systems, 1991, 19, 43-54.	0.1	5
331	Nonlinear modeling of pulsewidth-modulated and quasi-resonant converters. , 0, , .		5
332	A novel dead-time vector approach to analysis of DC link current in PWM inverter drives. , 0, , .		5
333	A novel two-quadrant zero-voltage transition converter for DC motor drives. , 0, , .		5
334	A novel position and velocity observer for robust control of switched reluctance motors., 0,,.		5
335	Stability analysis of fuzzy sliding mode controlled switched reluctance motor drives., 0,,.		5
336	Development of doubly salient permanent magnet motor flywheel energy storage for building integrated photovoltaic system. , 0, , .		5
337	An Improved Method for Discriminating ECG Signals using Typical Nonlinear Dynamic Parameters and Recurrence Quantification Analysis in Cardiac Disease Therapy. , 2005, 2005, 2459-62.		5
338	A novel chaotic-speed single-phase induction motor drive for cooling fans. , 0, , .		5
339	Design and Analysis of a Chaotic PWM Inverter for Electric Vehicles. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	5
340	A chaotic PWM motor drive for electric propulsion. , 2008, , .		5
341	Loss analysis of vehicle-to-grid operation. , 2010, , .		5
342	A feasibility study on a new brushless and gearless contra-rotating permanent magnet wind power generator. Journal of Applied Physics, 2014, 115 , .	2.5	5

#	Article	IF	Citations
343	Fault Signature of a Flux-Switching DC-Field Generator. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	5
344	A new parallel-hybrid-excitation linear vernier permanent-magnet machine: Improved solution for direct-driven power generation. , $2016, , .$		5
345	A New Linear Vernier Permanent-Magnet Machine Using High-Temperature Superconducting DC Field Excitation. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	5
346	All-In-One Induction Heating Using Dual Magnetic Couplings. Energies, 2019, 12, 1772.	3.1	5
347	S-CLC Compensated Wireless Power Transfer With Pulse-Frequency-Modulation Control for Dimmable Low-Pressure Sodium Lamps. IEEE Transactions on Magnetics, 2021, 57, 1-7.	2.1	5
348	A SPICE compatible model of permanent magnet DC motor drives. , 0, , .		4
349	A novel wide speed range permanent magnet brushless DC motor drive for electric vehicles. International Journal of Electronics, 1996, 80, 235-248.	1.4	4
350	Modeling and analysis of chaotic behavior in switched reluctance motor drives. , 0, , .		4
351	Neuro-fuzzy speed tracking control of traveling-wave ultrasonic motor drives using direct pulse width modulation. , 0, , .		4
352	A novel stator doubly fed doubly salient permanent magnet brushless machine. , 0, , .		4
353	Modeling and coordinated control for integrating electric vehicles into the power grid., 2011,,.		4
354	Optimal design and implementation of a permanent magnet linear vernier machine for direct-drive wave energy extraction. , 2012, , .		4
355	Development of Dual-memory Motor Drives for Electric Vehicles. Journal of International Council on Electrical Engineering, 2013, 3, 192-198.	0.4	4
356	Fault tolerant control of triple star-winding flux switching permanent magnet motor drive due to open phase. , 2015 , , .		4
357	Design and analysis of an advanced magnetic variable gear for hybrid electric vehicles. , 2015, , .		4
358	Development of reliable gearless motors for electric vehicles. , 2017, , .		4
359	Guest Editorial Emerging Electric Machines and Drives for Smart Energy Conversion. IEEE Transactions on Energy Conversion, 2018, 33, 1931-1933.	5.2	4
360	Development of a Singly Fed Mechanical-Offset Machine for Electric Vehicles. IEEE Transactions on Energy Conversion, 2018, 33, 516-525.	5.2	4

#	Article	IF	CITATIONS
361	Continuously Variable-Frequency Energy-Encrypted Wireless Power Transfer. Energies, 2019, 12, 1286.	3.1	4
362	Design and Analysis of Wireless Direct-Drive High-Intensity Discharge Lamp. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3558-3568.	5.4	4
363	Analysis of Air-Gap Field Modulation in Parallel-Hybrid-Excited Harmonic-Shift Machines. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	4
364	Design and Implementation of Neural Network Based Capacity Indicator for Lithium-Ion Battery. Journal of Asian Electric Vehicles, 2004, 2, 627-632.	0.4	4
365	Power Adaption Design for Multifrequency Wireless Power Transfer System. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	4
366	Design and Analysis of Demand-Customized Selective Wireless Power Transfer System. IEEE Transactions on Industrial Electronics, 2022, 69, 13451-13461.	7.9	4
367	Multi-Resonating-Compensation for Multi-Channel Multi-Pickup Wireless Power Transfer. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	4
368	Nonlinear modelling of switching DC-DC converters operating in discontinuous conduction mode. International Journal of Electronics, 1997, 83, 271-286.	1.4	3
369	Analysis of negative spikes on DC-link current in voltage-source PWM inverters. International Journal of Electronics, 1998, 85, 535-544.	1.4	3
370	Design and control of a new ultrasonic stepping motor., 0,,.		3
371	A short cylinder ultrasonic motor with novel excitation mode. , 0, , .		3
372	Chaoization of a Single-Phase Induction Motor for Washing Machines. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006, , .	0.0	3
373	Design and Control of a Double-Stator Permanent-Magnet Motor Drive for Electric Vehicles. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	3
374	Design and Control of a Doubly-Excited Permanent-Magnet Brushless Integrated-Starter-Generator for Hybrid Electric Vehicles. Conference Record - IAS Annual Meeting (IEEE Industry Applications) Tj ETQq0 0 0 r	gBTd :0 verl	ocks10 Tf 50 2
375	A Multi-hybrid Energy System for Hybrid Electric Vehicles. World Electric Vehicle Journal, 2010, 4, 505-510.	3.0	3
376	A Linear Stator Permanent Magnet Vernier Machine Using Variable Halbach Arrays. Applied Mechanics and Materials, 2013, 416-417, 305-310.	0.2	3
377	Fault signature of a flux-switching DC-field generator. , 2015, , .		3
378	Frequency-Modulated Wireless Direct-Drive Motor Control. IEEE Transactions on Magnetics, 2021, 57, 1-7.	2.1	3

#	Article	IF	Citations
379	Nonlinear Varying-Network Magnetic Circuit Analysis of Consequent-Pole Permanent-Magnet Motor for Electric Vehicles. World Electric Vehicle Journal, 2021, 12, 254.	3.0	3
380	A Magnetic-Differential Double-Rotor Flux-Reversal Permanent-Magnet Motor for Electric Vehicles. , 2021, , .		3
381	Spectral modeling of switched-mode power converters in discontinuous conduction mode., 0,,.		2
382	Computer-Aided Design Of A Permanent Magnet Motor. Electric Power Components and Systems, 1991, 19, 501-511.	0.1	2
383	A fast large-signal simulation of pulsewidth-modulated power converters. , 0, , .		2
384	Nonlinear modelling of switching DC-DC converters with independent inputs. International Journal of Electronics, 1993, 75, 361-374.	1.4	2
385	A novel soft-switching inverter using resonant inductor freewheeling. , 0, , .		2
386	A unified analysis of DC link current in space-vector PWM drives., 0,,.		2
387	A novel zero-current soft-switching converter for switched reluctance motor drives. , 0, , .		2
388	A novel zero-voltage soft-switching converter for switched reluctance motor drives. , 0, , .		2
389	Reduction of current ripple and acoustic noise in dual-inverter pole-changing induction motor drives. , 0, , .		2
390	Inductance measurement of doubly salient permanent magnet motors., 0,,.		2
391	Numerical analysis of magnetization in a mnemonic motor using time stepping finite element method coupled with Preisach theory. , 2009, , .		2
392	Cost-Emission Analysis of Vehicle-to-Grid System. World Electric Vehicle Journal, 2010, 4, 767-773.	3.0	2
393	Modelling, Evaluation and Optimization of Vehicle-to-Grid Operation. World Electric Vehicle Journal, 2010, 4, 809-817.	3.0	2
394	Development of a Smart DC Micro-Grid for Plug-in Electric Vehicle Charging and Discharging. World Electric Vehicle Journal, 2010, 4, 939-942.	3.0	2
395	A hybrid energy source based double-stator permanent magnet brushless motor drive for hybrid electric vehicles., 2011,,.		2
396	Analysis of Chaos in Josephson Junctions With External Magnetic Field for High-Precision Voltage Measurement in Electric Vehicles. IEEE Transactions on Applied Superconductivity, 2012, 22, 4904704-4904704.	1.7	2

#	Article	IF	CITATIONS
397	Simulation of the Linear Primary Permanent Magnet Vernier machine system for wave energy conversion. , $2013, \ldots$		2
398	An efficient offshore wind-wave hybrid generation system using direct-drive multitoothed rotating and linear machines. , 2014 , , .		2
399	A new fault-tolerant flux-reversal doubly-salient magnetless motor drive with four-phase topology. , 2015, , .		2
400	Complex-conjugate control of a linear magnetic-geared permanent-magnet machine for Archimedes wave swing based power generation. , $2015, \ldots$		2
401	Quantitative comparison of permanent magnet linear machines for ropeless elevator. , 2015, , .		2
402	Comparison of Induction Heating for Pans and Woks Using Planar Cooktops. , 2018, , .		2
403	Low-Frequency-Switching High-Frequency-Resonating Wireless Power Transfer. IEEE Transactions on Magnetics, $2021, 57, 1-8$.	2.1	2
404	Large-signal modeling of power conversion systems with independent inputs. , 0, , .		1
405	Optimal-efficiency control for constant-power operation of phase-decoupling permanent-magnet brushless motor drives. , 0, , .		1
406	A novel two-quadrant zero-current-transition converter for DC motor drives., 0,,.		1
407	Static characteristics of a new doubly salient permanent magnet motor., 0,,.		1
408	Neuro-fuzzy dual-mode control of travelling-wave ultrasonic motors., 0, , .		1
409	Subharmonics and chaos in switched reluctance motor drives. , 0, , .		1
410	Nonlinear magnetic circuit analysis for a novel stator-doubly-fed doubly-salient machine. , 0, , .		1
411	Design of permanent magnets to avoid chaos in PM synchronous machines., 0,,.		1
412	Micro-stepping control of ultrasonic stepping motors. , 0, , .		1
413	A New Design Approach for Spatially Shifted Standing-Wave Ultrasonic Motors. Electric Power Components and Systems, 2004, 32, 725-743.	1.8	1
414	Design of permanent magnets to chaoize PM synchronous motors for industrial mixers. , 2005, , .		1

#	Article	IF	CITATIONS
415	Scalar control of a new phase-decoupling permanent magnet synchronous motor for servo application. , 0 , , .		1
416	Application of Chaotic Motion to Industrial Compactors. , 2005, , .		1
417	Destabilization control of a chaotic motor for industrial mixers. , 0, , .		1
418	Active Control of Self-Locking Torque of Traveling-Wave Ultrasonic Motors Using Standing-Wave Operation. Electric Power Components and Systems, 2006, 34, 799-816.	1.8	1
419	Design and analysis of a DC field multitooth switched reluctance machine by using soft-magnetic-composite material., 2013,,.		1
420	Quantitative Comparison of Linear Magnetic Gear with Different Types of PMs. Applied Mechanics and Materials, 0, 416-417, 385-389.	0.2	1
421	A new coaxial magnetic gear using stationary permanent magnet ring. , 2013, , .		1
422	Chaotic modulation for vehicle-to-grid power interface. , 2014, , .		1
423	Maximum power point tracking control of a linear magnetic-geared generator for direct-drive wave energy conversion. , 2015 , , .		1
424	A six-phase transverse-flux-reversal linear machine for low-speed reciprocating power generation. , 2015, , .		1
425	A new permanent-magnet vernier direct-drive in-wheel motor for electric vehicles. , 2015, , .		1
426	Development of partitioned stator flux-switching machines for electric vehicles. Journal of International Council on Electrical Engineering, 2017, 7, 276-281.	0.4	1
427	Design and Analysis of Partitioned-Stator Switched-Flux Dual-Excitation Machine for Hybrid Electric Vehicles. World Electric Vehicle Journal, 2018, 9, 40.	3.0	1
428	Wireless Secondary-Converterless Bipolar Drive for AC Application. , 2019, , .		1
429	Analysis of Split-Tooth Stator-Slot Permanent-Magnet Machines With Different PM Arrangements. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	1
430	Nonlinear modeling and spectral analysis of Cuk converters. , 0, , .		0
431	Advanced conduction angle control of permanent magnet brushless motor drives. , 0, , .		0
432	Design and analysis of a new permanent magnet brushless DC machine. , 0, , .		0

#	Article	IF	CITATIONS
433	Design and analysis of a new multiphase polygonal-winding permanent-magnet brushless DC machine. , 0, , .		O
434	Control and operation of a new 8/6-pole split-winding doubly salient permanent magnet motor drive. , 0, , .		0
435	Chaoization of switched reluctance motor drives. , 2005, , .		O
436	Design, modeling and analysis of a brushless doubly-fed doubly-salient machine for electric vehicles. , 0, , .		0
437	Design of permanent magnets to guarantee frequency-changing startup for PM synchronous machines. , 2005, , .		O
438	Design and Analysis of a Double-Stator Cup-Rotor Directly Driven Permanent Magnet Wind Power Generator. , 2006, , .		0
439	Visualization of Failure Pattern in Specimens Containing Surface Crack Using X-ray Computerized Tomography., 0,, 175-183.		0
440	Wave power generation and its feasibility in Hong Kong. , 2009, , .		0
441	Optimal design of a double-stator permanent magnet brushless machine with series magnetic circuit. , 2010, , .		O
442	Analysis and control of chaos for lateral dynamics of electric vehicles. , 2011, , .		0
443	Design of dual-magnet memory machines. , 2011, , .		O
444	Performance comparisons of emerging move-and-charge technologies for electric vehicles. , 2014, , .		0
445	Design and loss analysis of a new self-decelerating PM in-wheel motor. , 2014, , .		O
446	Electromagnetic design of a new hybrid-excited flux-switching machine for fault-tolerant operations, 2015, , .		0
447	Comparison of winding arrangements of a linear stator permanent magnet vernier machine. , 2015, , .		O
448	Quantitative comparison of permanent magnet linear machines for ropeless elevator., 2015,,.		0
449	A new hybrid-structure machine with multi-mode fault-tolerant operation for Mars Rover. , 2015, , .		0
450	Electromagnetic design of a new hybrid-excited flux-switching machine for fault-tolerant operation. , 2015, , .		0

#		Article	IF	CITATIONS
4	51	Overview of energy systems for electric and hybrid vehicles. , 2016, , 1-30.		0
4	52	Design and Analysis of Optimal Current Vector for HTS-Based Multi-Input Wireless Power Transfer Systems. Energies, 2022, 15, 4337.	3.1	0