Paul Lemire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7957007/publications.pdf

Version: 2024-02-01

1125271 840119 13 391 11 13 citations h-index g-index papers 13 13 13 425 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Streptococcus suis Serotype 2 Infection Impairs Interleukin-12 Production and the MHC-II-Restricted Antigen Presentation Capacity of Dendritic Cells. Frontiers in Immunology, 2018, 9, 1199.	2.2	14
2	Natural Killer Cell Functions during the Innate Immune Response to Pathogenic Streptococci. Frontiers in Microbiology, 2017, 8, 1196.	1.5	15
3	Group B <i>Streptococcus</i> Induces a Robust IFN- <i>\hat{I}^3</i> Response by CD4 ⁺ T Cells in an <i>In Vitro</i> and <i>In Vivo</i> Model. Journal of Immunology Research, 2016, 2016, 1-12.	0.9	19
4	Genomic Recombination Leading to Decreased Virulence of Group B Streptococcus in a Mouse Model of Adult Invasive Disease. Pathogens, 2016, 5, 54.	1.2	7
5	Immune-responsiveness of CD4+ T cells during Streptococcus suis serotype 2 infection. Scientific Reports, 2016, 6, 38061.	1.6	15
6	Antibody Response Specific to the Capsular Polysaccharide Is Impaired in Streptococcus suis Serotype 2-Infected Animals. Infection and Immunity, 2015, 83, 441-453.	1.0	36
7	Implication of TLR- but Not of NOD2-Signaling Pathways in Dendritic Cell Activation by Group B Streptococcus Serotypes III and V. PLoS ONE, 2014, 9, e113940.	1.1	14
8	Group B Streptococcus and Streptococcus suis Capsular Polysaccharides Induce Chemokine Production by Dendritic Cells via Toll-Like Receptor 2- and MyD88-Dependent and -Independent Pathways. Infection and Immunity, 2013, 81, 3106-3118.	1.0	37
9	The NOD2 receptor does not play a major role in the pathogenesis ofÂGroup B Streptococcus in mice. Microbial Pathogenesis, 2013, 65, 41-47.	1.3	12
10	Exacerbated Type II Interferon Response Drives Hypervirulence and Toxic Shock by an Emergent Epidemic Strain of Streptococcus suis. Infection and Immunity, 2013, 81, 1928-1939.	1.0	56
11	Role of capsular polysaccharide in Group B Streptococccus interactions with dendritic cells. Microbes and Infection, 2012, 14, 1064-1076.	1.0	30
12	Encapsulated group B <i>Streptococcus</i> modulates dendritic cell functions via lipid rafts and clathrin-mediated endocytosis. Cellular Microbiology, 2012, 14, 1707-1719.	1.1	25
13	Critical Role for Streptococcussuis Cell Wall Modifications and Suilysin in Resistance to Complement-Dependent Killing by Dendritic Cells. Journal of Infectious Diseases, 2011, 204, 919-929.	1.9	111