
Claudia Pacholski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7956846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Assembly of ZnO: From Nanodots to Nanorods. Angewandte Chemie - International Edition, 2002, 41, 1188-1191.	13.8	1,764
2	Biosensing Using Porous Silicon Double-Layer Interferometers:Â Reflective Interferometric Fourier Transform Spectroscopy. Journal of the American Chemical Society, 2005, 127, 11636-11645.	13.7	352
3	Rectifying Behavior of Electrically Aligned ZnO Nanorods. Nano Letters, 2003, 3, 1097-1101.	9.1	289
4	Site-Specific Photodeposition of Silver on ZnO Nanorods. Angewandte Chemie - International Edition, 2004, 43, 4774-4777.	13.8	274
5	Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nature Nanotechnology, 2009, 4, 255-258.	31.5	195
6	Photonic Crystal Sensors Based on Porous Silicon. Sensors, 2013, 13, 4694-4713.	3.8	172
7	Protein-Coated Porous-Silicon Photonic Crystals for Amplified Optical Detection of Protease Activity. Advanced Materials, 2006, 18, 1393-1396.	21.0	147
8	Reflective Interferometric Fourier Transform Spectroscopy:Â A Self-Compensating Label-Free Immunosensor Using Double-Layers of Porous SiO2. Journal of the American Chemical Society, 2006, 128, 4250-4252.	13.7	127
9	Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases, 2011, 6, MR1-MR12.	1.6	118
10	Self-Assembled Plasmonic Core–Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range. ACS Nano, 2011, 5, 6586-6592.	14.6	111
11	pH-triggered release of vancomycin from protein-capped porous silicon films. Nanomedicine, 2008, 3, 31-43.	3.3	74
12	Lessons from nature: biomimetic subwavelength structures for highâ€performance optics. Laser and Photonics Reviews, 2012, 6, 641-659.	8.7	74
13	Extraordinary long range order in self-healing non-close packed 2D arrays. Soft Matter, 2011, 7, 3735.	2.7	61
14	Fiber optic plasmonic sensors: Providing sensitive biosensor platforms with minimal lab equipment. Biosensors and Bioelectronics, 2019, 132, 368-374.	10.1	54
15	Delivery of nanogram payloads using magnetic porous silicon microcarriers. Lab on A Chip, 2006, 6, 782.	6.0	50
16	Contact Line Motion on Nanorough Surfaces: A Thermally Activated Process. Journal of the American Chemical Society, 2013, 135, 7159-7171.	13.7	48
17	In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas. Nano Letters, 2019, 19, 1-7.	9.1	45
18	Plasmon Coupling in Self-Assembled Gold Nanoparticle-Based Honeycomb Islands. Journal of Physical Chemistry C, 2013, 117, 18634-18641.	3.1	38

Claudia Pacholski

#	Article	IF	CITATIONS
19	Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays. Nanoscale Research Letters, 2012, 7, 450.	5.7	34
20	Tailored antireflective biomimetic nanostructures for UV applications. Nanotechnology, 2010, 21, 425301.	2.6	33
21	Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching. RSC Advances, 2016, 6, 21430-21434.	3.6	28
22	Formation of Large 2D Arrays of Shapeâ€Controlled Colloidal Nanoparticles at Variable Interparticle Distances. Particle and Particle Systems Characterization, 2013, 30, 102-108.	2.3	27
23	Devising Self-Assembled-Monolayers for Surface-Enhanced Infrared Spectroscopy of pH-Driven Poly- <scp>l</scp> -lysine Conformational Changes. Langmuir, 2016, 32, 7356-7364.	3.5	26
24	Sensing with porous silicon double layers: A general approach for background suppression. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2088-2092.	0.8	24
25	Enhanced sputter yields of ion irradiated Au nano particles: energy and size dependence. Nanotechnology, 2015, 26, 325301.	2.6	22
26	Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques. Applied Optics, 2012, 51, 8.	1.8	20
27	Fabrication of ordered tubular porous silicon structures by colloidal lithography and metal assisted chemical etching: SERS performance of 2D porous silicon structures. Applied Surface Science, 2018, 462, 783-790.	6.1	20
28	Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations. Optics Express, 2010, 18, 23878.	3.4	19
29	Real-time monitoring of electrochemical controlled protein adsorption by a plasmonic nanowire based sensor. Chemical Communications, 2013, 49, 8326.	4.1	19
30	Small molecule detection by reflective interferometric Fourier transform spectroscopy (RIFTS). Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1318-1321.	1.8	18
31	Bottom-up fabrication of nanohole arrays loaded with gold nanoparticles: extraordinary plasmonic sensors. Chemical Communications, 2014, 50, 15419-15422.	4.1	16
32	A chemical route to sub-wavelength hole arrays in metallic films. Journal of Materials Chemistry, 2009, 19, 5906.	6.7	14
33	Fabrication of multi-parametric platforms based on nanocone arrays for determination of cellular response. Beilstein Journal of Nanotechnology, 2011, 2, 545-551.	2.8	13
34	Bottom-Up Fabrication of Hybrid Plasmonic Sensors: Gold-Capped Hydrogel Microspheres Embedded in Periodic Metal Hole Arrays. ACS Applied Materials & Interfaces, 2016, 8, 26392-26399.	8.0	13
35	One Spot—Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance. Frontiers in Chemistry, 2019, 7, 593.	3.6	13
36	Getting real: influence of structural disorder on the performance of plasmonic hole array sensors fabricated by a bottom-up approach. Journal of Materials Chemistry C, 2014, 2, 7632-7638.	5.5	12

CLAUDIA PACHOLSKI

#	Article	IF	CITATIONS
37	Dual responsiveness of microgels induced by single light stimulus. Applied Physics Letters, 2021, 118, .	3.3	10
38	Seeding Growth Approach to Gold Nanoparticles with Diameters Ranging from 10 to 80 Nanometers in Organic Solvent. European Journal of Inorganic Chemistry, 2014, 2014, 3633-3637.	2.0	9
39	Porous silicon pillar and bilayer structure as a nucleation center for the formation of aligned vanadium pentoxide nanorods. Ceramics International, 2017, 43, 8023-8030.	4.8	8
40	Synthesis and Formation of an Ems Correlated Contaminant in Biotechnologically Manufactured L-Tryptophan. Advances in Experimental Medicine and Biology, 1999, 467, 481-486.	1.6	8
41	Topâ€Up Fabrication of Gold Nanorings. Chemistry - an Asian Journal, 2014, 9, 2072-2076.	3.3	7
42	Dynamics of nanoparticle morphology under low energy ion irradiation. Nanotechnology, 2018, 29, 314002.	2.6	7
43	Microscopic Understanding of Reaction Rates Observed in Plasmon Chemistry of Nanoparticle–Ligand Systems. Journal of Physical Chemistry C, 2022, 126, 5333-5342.	3.1	7
44	Two-Dimensional Arrays of Poly(<i>N</i> -Isopropylacrylamide) Microspheres: Formation, Characterization and Application. Zeitschrift Fur Physikalische Chemie, 2015, 229, 283-300.	2.8	6
45	Plasmonic biosensors fabricated by galvanic displacement reactions for monitoring biomolecular interactions in real time. Analytical and Bioanalytical Chemistry, 2020, 412, 3433-3445.	3.7	6
46	Fabrication of patterned porous silicon structures using a poly(N-iso-propylacrylamide) microgel mask and catalytic etching. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1797-1800.	0.8	5
47	Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1527-1539.	2.8	5
48	The disappearance and return of nanoparticles upon low energy ion irradiation. Nanotechnology, 2022, 33, 035703.	2.6	5
49	ZnO nanorods: growth mechanism and anisotropic functionalization. , 2004, 5513, 232.		4
50	Optical characterization of porous silicon monolayers decorated with hydrogel microspheres. Nanoscale Research Letters, 2014, 9, 425.	5.7	4
51	Soft colloidal lithography. RSC Advances, 2017, 7, 10688-10691.	3.6	4
52	Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors: A Win–Win Situation. ACS Applied Materials & Interfaces, 2021, 13, 36436-36444.	8.0	4
53	Bottom, Top, or in Between: Combining Plasmonic Nanohole Arrays and Hydrogel Microgels for Optical Fiber Sensor Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	4
54	Bottom-up fabrication of ordered 2D and 3D gold nanoparticle assemblies showing collective or individual plasmon resonances. , 2013, , .		2

#	Article	IF	CITATIONS
55	Colloidal Nanoparticles: Formation of Large 2D Arrays of Shapeâ€Controlled Colloidal Nanoparticles at Variable Interparticle Distances (Part. Part. Syst. Charact. 1/2013). Particle and Particle Systems Characterization, 2013, 30, 2-2.	2.3	1
56	Trendbericht Analytische Chemie. Nachrichten Aus Der Chemie, 2020, 68, 52-60.	0.0	1
57	Site-Specific Photodeposition of Silver on ZnO Nanorods ChemInform, 2004, 35, no.	0.0	Ο
58	Antireflective 'moth-eye' structures fabricated by a cheap and versatile process on various optical elements. , 2011, , .		0
59	Detection of biomolecules with 1D photonic crystals based on porous silicon. , 2014, , .		Ο
60	Plasmonic Lab-on-fiber Sensor: Fabrication and Subsequent Optimization. , 2022, , .		0