
Laurence Pirault-roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7956799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NO reduction by CO under oxidative conditions over CoCuAl mixed oxides derived from hydrotalcite-like compounds: Effect of water. Catalysis Today, 2022, 384-386, 97-105.	4.4	8
2	Heterogeneous Catalytic Degradation of Diuron Using Algerian Sodium Montmorillonite. Clean - Soil, Air, Water, 2022, 50, 2000468.	1.1	4
3	Influence of the Ir content and the support on the thiotolerance of the Ir/ <scp>SiO₂â€Al₂O₃</scp> catalysts for selective ring opening of decalin. Canadian Journal of Chemical Engineering, 2021, 99, 1146-1157.	1.7	4
4	Investigation of catalysts M/CeO2 (M = Pt, Rh, or Pd) for purification of CO2 derived from oxycombustion in the absence or presence of water. Environmental Science and Pollution Research, 2021, 28, 12521-12532.	5.3	5
5	A Highly Selective and Stable Rutheniumâ€Nickel Supported on Ceria Catalyst for Carbon Dioxide Methanation. ChemCatChem, 2021, 13, 1559-1567.	3.7	13
6	Application of supported lanthanum catalysts in the hydrogenation of nitriles. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 687.	1.7	2
7	Adsorption of Bisphenol A from Aqueous Solution by HDTMA-Tunisian Clay Synthesized Under Microwave Irradiation: A Parametric and Thermodynamic Study. Clays and Clay Minerals, 2020, 68, 361-372.	1.3	9
8	Catalytic wet air oxidation of high BPA concentration over iron-based catalyst supported on orthophosphate. Environmental Science and Pollution Research, 2020, 27, 32533-32543.	5.3	8
9	Porous carbon materials derived from olive kernels: application in adsorption of organic pollutants. Environmental Science and Pollution Research, 2020, 27, 29967-29982.	5.3	9
10	Preparation of mesoporous activated carbon from date stones for the adsorption of Bemacid Red. Water Science and Technology, 2019, 79, 1357-1366.	2.5	9
11	Catalytic abatement of dichloromethane over transition metal oxide catalysts: Thermodynamic modelling and experimental studies. Journal of Cleaner Production, 2019, 228, 814-823.	9.3	19
12	Catalytic degradation of O resol using H ₂ O ₂ onto Algerian Clayâ€Na. Water Environment Research, 2019, 91, 165-174.	2.7	6
13	Selective ring opening of decalin on Rh-Pd/SiO2-Al2O3 bifunctional systems: Catalytic performance and deactivation. Fuel Processing Technology, 2018, 177, 6-15.	7.2	7
14	Effect of the metallic particle size of supported Pt catalysts on methylcyclopentane hydrogenolysis: Understanding of the ring opening products distribution by a geometric approach. Journal of Catalysis, 2018, 367, 234-243.	6.2	16
15	Total Oxidation of Dichloromethane over Silica Modified Alumina Catalysts Washcoated on Ceramic Monoliths. Catalysts, 2018, 8, 339.	3.5	7
16	Palladium, Iridium, and Rhodium Supported Catalysts: Predictive H2 Chemisorption by Statistical Cuboctahedron Clusters Model. Materials, 2018, 11, 819.	2.9	14
17	Influence of rhodium content on the behavior of Rh/SiO ₂ –Al ₂ O ₃ catalysts for selective ring opening of decalin. RSC Advances, 2017, 7, 46803-46811.	3.6	13
18	Influence of acid-base properties of the support on the catalytic performances of Pt-based catalysts in a gas-phase hydrogenation of acetonitrile. Applied Catalysis A: General, 2017, 544, 1-9.	4.3	25

LAURENCE PIRAULT-ROY

#	Article	IF	CITATIONS
19	Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts. Chemical Engineering Journal, 2017, 313, 1010-1022.	12.7	37
20	The Influence of the Nature of the Support on the Copper–Palladium Catalysed Suzuki–Miyaura-Coupling. Catalysis Letters, 2016, 146, 596-608.	2.6	6
21	Controlled preparation and characterization of Pt-Rh/Al2O3 bimetallic catalysts for reactions in reducing conditions. Applied Catalysis A: General, 2016, 517, 81-90.	4.3	13
22	Catalytic activity of metal-doped porous materials in the salicylaldehyde Petasis-Borono Mannich reaction. Monatshefte Für Chemie, 2016, 147, 749-753.	1.8	6
23	Study on the catalytic oxidation of DMDS over Pt-Cu catalysts supported on Al2O3, AlSi20 and SiO2. Applied Catalysis B: Environmental, 2016, 181, 24-33.	20.2	42
24	Study of the Structure–Activity Relationship in a Heterogeneous Copper–Palladium Catalysed Suzuki–Miyaura Coupling. Catalysis Letters, 2015, 145, 834-839.	2.6	8
25	Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. Applied Catalysis A: General, 2015, 504, 576-584.	4.3	53
26	Green Propulsion: Catalysts for the European FP7 Project GRASP. Topics in Catalysis, 2014, 57, 656-667.	2.8	15
27	Effect of Al2O3/MgO molar ratio on catalytic performance of Pt/MgO–Al2O3 catalyst in acetonitrile hydrogenation followed by Fourier transform infrared spectroscopy. Applied Catalysis A: General, 2014, 475, 363-370.	4.3	22
28	Preparation and characterization of MTiX for the catalytic oxidation of cyclohexane. RSC Advances, 2014, 4, 22374-22379.	3.6	8
29	Copper(II)- and palladium(II)-modified molecular sieve, a reusable catalyst for the Suzuki–Miyaura-coupling. Applied Catalysis A: General, 2014, 484, 39-50.	4.3	34
30	Study of effect of chromium on titanium dioxide phase transformation. Bulletin of Materials Science, 2014, 37, 669-677.	1.7	7
31	Oxygen Storage Capacity of Pt–CeO2 and Pt–Ce0.5Zr0.5O2 Catalysts. Topics in Catalysis, 2013, 56, 658-661.	2.8	6
32	Total Oxidation of Dichloromethane Over Metal Oxide Catalysts. Topics in Catalysis, 2013, 56, 679-687.	2.8	16
33	Catalytic Partial Oxidation of Methanol and Methyl Mercaptan: Studies on the Selectivity of TiO2 and CeO2 Supported V2O5 Catalysts. Topics in Catalysis, 2013, 56, 650-657.	2.8	7
34	Synthesis, characterization and activity in cyclohexene epoxidation of V2O5–TiO2 anatase xerogel. Journal of Sol-Gel Science and Technology, 2012, 64, 637-642.	2.4	11
35	Synthesis of vanadium oxides 5Âwt.%VO 2 –M x O y by sol–gel process and application in cyclohexene epoxidation. Bulletin of Materials Science, 2012, 35, 1187-1194.	1.7	10
36	Preferential CO oxidation over nanosized gold catalysts supported on ceria and amorphous ceria–alumina. Applied Catalysis B: Environmental, 2012, 128, 10-20.	20.2	49

LAURENCE PIRAULT-ROY

#	Article	IF	CITATIONS
37	Cooperative effect between copper and gold on ceria for CO-PROX reaction. Catalysis Today, 2012, 180, 34-41.	4.4	67
38	Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by tert-butyl hydroperoxide over Pt/oxide catalysts. Bulletin of Materials Science, 2011, 34, 1127-1135.	1.7	24
39	Promising PtIr, catalysts for hydrocarbon transformation: Comparison of different preparation methods. Journal of Catalysis, 2010, 272, 315-319.	6.2	19
40	Investigation of different preparation methods of PtIr, PtIrSn and PtIrGe catalysts. Studies in Surface Science and Catalysis, 2010, 175, 467-470.	1.5	1
41	PROPULSION AND CATALYSIS - HISTORICAL SURVEY, UP-TO-DATE OVERVIEW, AND CURRENT CHALLENGES. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9, 413-436.	0.3	4
42	Ethylcyclopentane ring opening reaction over PtGe/Al2O3 catalysts prepared by controlled surface reaction. Reaction Kinetics and Catalysis Letters, 2008, 94, 301-310.	0.6	2
43	Characterization and catalytic properties of Rh–Sn/Al2O3 catalyst prepared by organometallic grafting. Applied Catalysis A: General, 2007, 332, 27-36.	4.3	14
44	Methylcyclopentane transformation on Ge–Rh bimetallic catalysts prepared by organometallic grafting. Catalysis Communications, 2007, 8, 686-692.	3.3	10
45	Well-defined Rh/Al2O3 catalysts selectively poisoned by Ge: a new tool to study reaction pathways. Studies in Surface Science and Catalysis, 2006, , 577-584.	1.5	1
46	Characterization and catalytic study of PtGe/Al2O3 catalysts prepared by organometallic grafting. Journal of Catalysis, 2006, 238, 67-78.	6.2	18
47	Design and Development of a Dynamic Reactor with Online Analysis for the Catalytic Decomposition of Monopropellants. , 2004, , .		0
48	A new approach of selective Ge deposition for RhGe/Al2O3 catalysts: characterization and testing in 2,2,3-trimethylbutane hydrogenolysis. Applied Catalysis A: General, 2003, 245, 15-31.	4.3	15
49	Methylcyclopentane reactions on Rh-Ge/Al2O3 catalysts prepared by controlled surface reaction. Applied Catalysis A: General, 2003, 252, 421-426.	4.3	23
50	Hydrogen Peroxide Decomposition on Various Supported Catalysts Effect of Stabilizers. Journal of Propulsion and Power, 2002, 18, 1235-1241.	2.2	74
51	Monopropellant decomposition catalysts. Applied Catalysis A: General, 2002, 234, 145-153.	4.3	51
52	Specific Behavior of Tailor-Made Pt–Ge/Al2O3 Catalysts in Transformation of Hydrocarbons. Journal of Catalysis, 2002, 208, 490-493.	6.2	15
53	Modelling of the metallic phases of different Pt–Rh/Al2O3–CeO2 catalysts: influence of the rhodium loading and nature of the metallic precursors. Applied Catalysis A: General, 2000, 199, 109-122.	4.3	5
54	Catalytic activity and EXAFS characterisation of three way automative Pt–Rh/Al2O3–CeO2 catalysts from different preparations. Applied Catalysis A: General, 1998, 172, 249-258.	4.3	10

#	Article	IF	CITATIONS
55	Preparation of Pt-Rh/Al2O3-CeO2 catalysts by surface redox reactions. Studies in Surface Science and Catalysis, 1995, 96, 193-202.	1.5	5
56	Influence of the redox properties of ceria on the preparation of three-way automotive platinum—rhodium/ alumina—ceria catalysts. Applied Catalysis B: Environmental, 1994, 5, 57-69.	20.2	37
57	Modification by sulfur of automotive exhaust catalysts: effects of the preparation procedure of the catalysts. Studies in Surface Science and Catalysis, 1994, 88, 343-350.	1.5	2
58	Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay. International Journal of Environmental Analytical Chemistry, 0, , 1-18.	3.3	2