
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7956752/publications.pdf Version: 2024-02-01

<u> Снам-Ги Гии</u>

#	Article	IF	CITATIONS
1	COVID-19 mRNA booster vaccines elicit strong protection against SARS-CoV-2 Omicron variant in patients with cancer. Cancer Cell, 2022, 40, 117-119.	16.8	61
2	SARS-CoV-2 spreads through cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	145
3	Neutralizing antibody responses against SARS-CoV-2 in vaccinated people with multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2022, 8, 205521732210873.	1.0	4
4	Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Science Translational Medicine, 2022, 14, eabn8057.	12.4	150
5	Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2. Cell Host and Microbe, 2022, 30, 1093-1102.e3.	11.0	114
6	Neutralization of the SARS-CoV-2 Deltacron and BA.3 Variants. New England Journal of Medicine, 2022, 386, 2340-2342.	27.0	25
7	Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 Subvariants. New England Journal of Medicine, 2022, 386, 2526-2528.	27.0	153
8	Role of host factors in SARS-CoV-2 entry. Journal of Biological Chemistry, 2021, 297, 100847.	3.4	67
9	SERINC proteins potentiate antiviral type I IFN production and proinflammatory signaling pathways. Science Signaling, 2021, 14, eabc7611.	3.6	13
10	Neutralization of SARS-CoV-2 Variants of Concern Harboring Q677H. MBio, 2021, 12, e0251021.	4.1	33
11	Impaired neutralizing antibody response to COVID-19 mRNA vaccines in cancer patients. Cell and Bioscience, 2021, 11, 197.	4.8	32
12	Multifaceted Roles of TIM-Family Proteins in Virus–Host Interactions. Trends in Microbiology, 2020, 28, 224-235.	7.7	32
13	Emerging Viruses without Borders: The Wuhan Coronavirus. Viruses, 2020, 12, 130.	3.3	88
14	Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers, and convalescent plasma donors. JCI Insight, 2020, 5, .	5.0	86
15	CD4-Dependent Modulation of HIV-1 Entry by LY6E. Journal of Virology, 2019, 93, .	3.4	22
16	TIM-mediated inhibition of HIV-1 release is antagonized by Nef but potentiated by SERINC proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5705-5714.	7.1	28
17	HIV-1 Envelope Glycoprotein at the Interface of Host Restriction and Virus Evasion. Viruses, 2019, 11, 311.	3.3	18
18	Emerging Role of LY6E in Virus–Host Interactions. Viruses, 2019, 11, 1020.	3.3	37

#	Article	IF	CITATIONS
19	Interferon-induced transmembrane proteins inhibit cell fusion mediated by trophoblast syncytins. Journal of Biological Chemistry, 2019, 294, 19844-19851.	3.4	53
20	Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses, 2019, 11, 1060.	3.3	13
21	The Polar Region of the HIV-1 Envelope Protein Determines Viral Fusion and Infectivity by Stabilizing the gp120-gp41 Association. Journal of Virology, 2019, 93, .	3.4	9
22	SAMHD1 inhibits epithelial cell transformation in vitro and affects leukemia development in xenograft mice. Cell Cycle, 2018, 17, 2564-2576.	2.6	4
23	The Inhibition of HIV-1 Entry Imposed by Interferon Inducible Transmembrane Proteins Is Independent of Co-Receptor Usage. Viruses, 2018, 10, 413.	3.3	10
24	The V3 Loop of HIV-1 Env Determines Viral Susceptibility to IFITM3 Impairment of Viral Infectivity. Journal of Virology, 2017, 91, .	3.4	37
25	Interferon-inducible LY6E Protein Promotes HIV-1 Infection. Journal of Biological Chemistry, 2017, 292, 4674-4685.	3.4	52
26	Exogenous expression of SAMHD1 inhibits proliferation and induces apoptosis in cutaneous T-cell lymphoma-derived HuT78 cells. Cell Cycle, 2017, 16, 179-188.	2.6	26
27	Evidence against a role for jaagsiekte sheep retrovirus in human lung cancer. Retrovirology, 2017, 14, 3.	2.0	9
28	CPT-cGMP Is A New Ligand of Epithelial Sodium Channels. International Journal of Biological Sciences, 2016, 12, 359-366.	6.4	6
29	Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger. PLoS Pathogens, 2016, 12, e1005373.	4.7	34
30	Cell–cell contact promotes Ebola virus GP-mediated infection. Virology, 2016, 488, 202-215.	2.4	10
31	Nonhuman Primate IFITM Proteins Are Potent Inhibitors of HIV and SIV. PLoS ONE, 2016, 11, e0156739.	2.5	23
32	Removal of regulatory T cells prevents secondary chronic infection but increases the mortality of subsequent sub-acute infection in sepsis mice. Oncotarget, 2016, 7, 10962-10975.	1.8	13
33	The C-Terminal Sequence of IFITM1 Regulates Its Anti-HIV-1 Activity. PLoS ONE, 2015, 10, e0118794.	2.5	29
34	A Sorting Signal Suppresses IFITM1 Restriction of Viral Entry. Journal of Biological Chemistry, 2015, 290, 4248-4259.	3.4	38
35	IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein. Cell Reports, 2015, 13, 145-156.	6.4	133
36	Primate lentiviruses are differentially inhibited by interferon-induced transmembrane proteins. Virology, 2015, 474, 10-18.	2.4	36

#	Article	IF	CITATIONS
37	Correlation of Apical Fluid-Regulating Channel Proteins with Lung Function in Human COPD Lungs. PLoS ONE, 2014, 9, e109725.	2.5	23
38	Inhibition of Hepatitis C Virus Replication In Vitro by Xanthohumol, A Natural Product Present in Hops. Planta Medica, 2014, 80, 171-176.	1.3	14
39	Identification of an endocytic signal essential for the antiviral action of IFITM3. Cellular Microbiology, 2014, 16, 1080-1093.	2.1	114
40	TIM-family proteins inhibit HIV-1 release. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3699-707.	7.1	68
41	HIV-1 mutates to evade IFITM1 restriction. Virology, 2014, 454-455, 11-24.	2.4	35
42	IFITM Proteins Restrict Viral Membrane Hemifusion. PLoS Pathogens, 2013, 9, e1003124.	4.7	310
43	Shortâ€peptide fusion inhibitors with high potency against wildâ€type and enfuvirtideâ€resistant HIVâ€1. FASEB Journal, 2013, 27, 1203-1213.	0.5	54
44	Biochemical, inhibition and inhibitor resistance studies of xenotropic murine leukemia virus-related virus reverse transcriptase. Nucleic Acids Research, 2012, 40, 345-359.	14.5	14
45	Critical Role of Leucine-Valine Change in Distinct Low pH Requirements for Membrane Fusion between Two Related Retrovirus Envelopes. Journal of Biological Chemistry, 2012, 287, 7640-7651.	3.4	11
46	The N-Terminal Region of IFITM3 Modulates Its Antiviral Activity by Regulating IFITM3 Cellular Localization. Journal of Virology, 2012, 86, 13697-13707.	3.4	162
47	Membrane Fusion and Cell Entry of XMRV Are pH-Independent and Modulated by the Envelope Glycoprotein's Cytoplasmic Tail. PLoS ONE, 2012, 7, e33734.	2.5	12
48	Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection. Virology, 2011, 421, 173-183.	2.4	8
49	The IFITM Proteins Inhibit HIV-1 Infection. Journal of Virology, 2011, 85, 2126-2137.	3.4	345
50	The Transmembrane Domain of BST-2 Determines Its Sensitivity to Down-Modulation by Human Immunodeficiency Virus Type 1 Vpu. Journal of Virology, 2009, 83, 7536-7546.	3.4	114
51	Receptor Binding and Low pH Coactivate Oncogenic Retrovirus Envelope-Mediated Fusion. Journal of Virology, 2009, 83, 11447-11455.	3.4	27
52	Fusogenicity of Jaagsiekte Sheep Retrovirus Envelope Protein Is Dependent on Low pH and Is Enhanced by Cytoplasmic Tail Truncations. Journal of Virology, 2008, 82, 2543-2554.	3.4	25
53	Jaagsiekte Sheep Retrovirus Utilizes a pH-Dependent Endocytosis Pathway for Entry. Journal of Virology, 2008, 82, 2555-2559.	3.4	32
54	Enzootic Nasal Tumor Virus Envelope Requires a Very Acidic pH for Fusion Activation and Infection. Journal of Virology, 2008, 82, 9023-9034.	3.4	24

#	Article	IF	CITATIONS
55	Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence. Biochemical and Biophysical Research Communications, 2007, 360, 219-225.	2.1	22
56	Oncogenic transformation by the jaagsiekte sheep retrovirus envelope protein. Oncogene, 2007, 26, 789-801.	5.9	60
57	Transformation of Madin-Darby Canine Kidney Epithelial Cells by Sheep Retrovirus Envelope Proteins. Journal of Virology, 2005, 79, 927-933.	3.4	53
58	Jaagsiekte Sheep Retrovirus Envelope Efficiently Pseudotypes Human Immunodeficiency Virus Type 1-Based Lentiviral Vectors. Journal of Virology, 2004, 78, 2642-2647.	3.4	22
59	Transformation and scattering activities of the receptor tyrosine kinase RON/Stk in rodent fibroblasts and lack of regulation by the jaagsiekte sheep retrovirus receptor, Hyal2. BMC Cancer, 2004, 4, 64.	2.6	15
60	Dual HIV-1 infection associated with rapid disease progression. Lancet, The, 2004, 363, 619-622.	13.7	189
61	Putative Phosphatidylinositol 3-Kinase (PI3K) Binding Motifs in Ovine Betaretrovirus Env Proteins Are Not Essential for Rodent Fibroblast Transformation and PI3K/Akt Activation. Journal of Virology, 2003, 77, 7924-7935.	3.4	63
62	Role of Virus Receptor Hyal2 in Oncogenic Transformation of Rodent Fibroblasts by Sheep Betaretrovirus Env Proteins. Journal of Virology, 2003, 77, 2850-2858.	3.4	62
63	Hyaluronidase 2 negatively regulates RON receptor tyrosine kinase and mediates transformation of epithelial cells by jaagsiekte sheep retrovirus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4580-4585.	7.1	88
64	Envelope-Induced Cell Transformation by Ovine Betaretroviruses. Journal of Virology, 2002, 76, 5387-5394.	3.4	64
65	Selection for Human Immunodeficiency Virus Type 1 Recombinants in a Patient with Rapid Progression to AIDS. Journal of Virology, 2002, 76, 10674-10684.	3.4	68
66	Site-Directed Mutagenesis Using Uracil-Containing Double-Stranded DNA Templates and DpnI Digestion. BioTechniques, 1999, 27, 734-738.	1.8	18
67	Genetic Evaluation of Suspected Cases of Transient HIV-1 Infection of Infants. Science, 1998, 280, 1073-1077.	12.6	68
68	Evolution of Hepatitis C Virus Quasispecies in Hypervariable Region 1 and the Putative Interferon Sensitivity-Determining Region during Interferon Therapy and Natural Infection. Journal of Virology, 1998, 72, 4288-4296.	3.4	131