Jinjin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7956723/publications.pdf

Version: 2024-02-01

		109137	149479
86	3,362	35	56
papers	citations	h-index	g-index
86	86	86	5072
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emerging Intelligent Manufacturing of Metal Halide Perovskites. Advanced Materials Technologies, 2023, 8, .	3.0	3
2	Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Metals, 2022, 41, 96-105.	3.6	12
3	Coupled influence of pore defects on the failure site for high-speed railway gearbox material. Engineering Fracture Mechanics, 2022, 261, 108216.	2.0	2
4	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3 . 5	9
5	Emerging Newâ€Generation Detecting and Sensing of Metal Halide Perovskites. Advanced Electronic Materials, 2022, 8, .	2.6	17
6	Spatiotemporally Correlated Imaging of Interfacial Defects and Photocurrents in High Efficiency Tripleâ€Cation Mixedâ€Halide Perovskites. Small, 2022, 18, e2200523.	5.2	5
7	Flexible Transparent Highâ€Efficiency Photoelectric Perovskite Resistive Switching Memory. Advanced Functional Materials, 2022, 32, .	7.8	24
8	Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Advanced Functional Materials, 2021, 31, 2006243.	7.8	71
9	Secondary phase induced cracking initiation of high-speed railway gearbox. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140064.	2.6	2
10	Competition between activation energy and migration entropy in lithium ion conduction in superionic NASICON-type Li $<$ sub $<$ 1a $<$ 3x $<$ 8ub $>$ Ga $<$ 8ub $>$ x $<$ 8ub $>$ Zr $<$ 8ub $>$ 2 $<$ 8ub $>$ 0curnal of Materials Chemistry A, 2021, 9, 7817-7825.	5 . 2	10
11	Polar or nonpolar? That is not the question for perovskite solar cells. National Science Review, 2021, 8, nwab094.	4.6	19
12	Oxygen migration induced effective magnetic and resistive switching boosted by graphene quantum dots. Journal of Alloys and Compounds, 2021, 863, 158339.	2.8	14
13	Ferroic alternation in methylammonium lead triiodide perovskite. EcoMat, 2021, 3, e12131.	6.8	13
14	Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway. Nature Communications, 2021, 12, 5516.	5.8	36
15	Preface to the special issue on Interdisciplines. Journal of Central South University, 2021, 28, 3639-3641.	1.2	1
16	Enhancing microstructural properties of alumina ceramics via binary sintering aids. Journal of Central South University, 2021, 28, 3705-3713.	1.2	8
17	An ultrahigh-voltage 4H-SiC merged PiN Schottky diode with three-dimensional p-type buried layers. Journal of Central South University, 2021, 28, 3694-3704.	1.2	0
18	Role of secondary phase particles in fatigue behavior of high-speed railway gearbox material. International Journal of Fatigue, 2020, 131, 105336.	2.8	7

#	Article	IF	Citations
19	Selective doping to relax glassified grain boundaries substantially enhances the ionic conductivity of LiTi2(PO4)3 glass-ceramic electrolytes. Journal of Power Sources, 2020, 449, 227574.	4.0	18
20	Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision. Advanced Intelligent Systems, 2020, 2, 2070092.	3.3	13
21	Unraveling atomic-scale lithiation mechanisms in a NiO thin film electrode. Journal of Materials Chemistry A, 2020, 8, 25198-25207.	5.2	7
22	Suppressing Defectsâ€Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Advanced Materials, 2020, 32, e2003965.	11.1	123
23	Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision. Advanced Intelligent Systems, 2020, 2, 2000122.	3.3	44
24	Spatially Resolved Electrochemical Strain of Solidâ€State Electrolytes via High Resolution Sequential Excitation and Its Implication on Grain Boundary Impedance. Small Methods, 2020, 4, 2000308.	4.6	12
25	Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature, 2020, 584, 377-381.	13.7	136
26	General Decomposition Pathway of Organic–Inorganic Hybrid Perovskites through an Intermediate Superstructure and its Suppression Mechanism. Advanced Materials, 2020, 32, e2001107.	11.1	42
27	Epitaxial array of Fe3O4 nanodots for high rate high capacity conversion type lithium ion batteries electrode with long cycling life. Nano Energy, 2020, 74, 104876.	8.2	51
28	Conduction Response in Highly Flexible Nonvolatile Memory Devices. Advanced Electronic Materials, 2020, 6, 2000151.	2.6	11
29	Effects of microstructural heterogeneity on fatigue properties of cast aluminum alloys. Journal of Central South University, 2020, 27, 674-697.	1.2	10
30	Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. Science Bulletin, 2020, 65, 1643-1649.	4.3	34
31	Effect of Clâ^' Concentration on the SCC Behavior of 13Cr Stainless Steel in High-Pressure CO2 Environment. Acta Metallurgica Sinica (English Letters), 2019, 32, 1459-1469.	1.5	4
32	Nanoscale Insights into Photovoltaic Hysteresis in Triple ation Mixedâ€Halide Perovskite: Resolving the Role of Polarization and Ionic Migration. Advanced Materials, 2019, 31, e1902870.	11.1	73
33	Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy. Nanotechnology, 2019, 30, 205703.	1.3	12
34	High-efficiency magnetic modulation in Ti/ZnO/Pt resistive random-access memory devices using amorphous zinc oxide film. Applied Surface Science, 2019, 488, 92-97.	3.1	19
35	Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60, 476-484.	8.2	66
36	Mapping intrinsic electromechanical responses at the nanoscale via sequential excitation scanning probe microscopy empowered by deep data. National Science Review, 2019, 6, 55-63.	4.6	27

#	Article	IF	CITATIONS
37	Quadratic electromechanical strain in silicon investigated by scanning probe microscopy. Journal of Applied Physics, 2018, 123, .	1.1	42
38	Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne. Carbon, 2018, 132, 598-605.	5.4	67
39	Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 4807.	5.8	161
40	Metallic tin substitution of organic lead perovskite films for efficient solar cells. Journal of Materials Chemistry A, 2018, 6, 20224-20232.	5.2	24
41	Ferroic domains regulate photocurrent in single-crystalline CH3NH3PbI3 films self-grown on FTO/TiO2 substrate. Npj Quantum Materials, 2018, 3, .	1.8	76
42	The structure, oxygen vacancies and magnetic properties of TiOx (0†<†x†<†2) synthesized by plasma assisted chemical vapor deposition and reduction. Materials Letters, 2018, 228, 212-215.	1.3	9
43	Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity. Nano Energy, 2018, 51, 19-25.	8.2	24
44	Photo-induced ferroelectric switching in perovskite CH ₃ NH ₃ PbI ₃ films. Nanoscale, 2017, 9, 3806-3817.	2.8	86
45	A sintering-free, nanocrystalline tin oxide electron selective layer for organometal perovskite solar cells. Science China Materials, 2017, 60, 208-216.	3.5	16
46	P–N depleted bulk BiOBr/α-Fe ₂ O ₃ heterojunctions applied for unbiased solar water splitting. Dalton Transactions, 2017, 46, 200-206.	1.6	25
47	Touching is believing: interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy. Npj Quantum Materials, 2017, 2, .	1.8	43
48	Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells. Science Bulletin, 2017, 62, 1173-1176.	4.3	69
49	Enhanced performance of solar cells via anchoring CuGaS2 quantum dots. Science China Materials, 2017, 60, 829-838.	3.5	6
50	Scanning Thermo-Ionic Microscopy: Probing Nanoscale Electrochemistry via Thermal Stress-Induced Oscillation. Microscopy Today, 2017, 25, 12-19.	0.2	11
51	Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. Journal of Power Sources, 2017, 339, 51-60.	4.0	71
52	Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale. Journal of Applied Physics, 2016, 119, .	1.1	28
53	Facilely controlling the Förster energy transfer efficiency of dendron encapsulated conjugated organic molecular wire–CdSe quantum dot nanostructures. New Journal of Chemistry, 2015, 39, 1916-1921.	1.4	2
54	Enhanced photocurrent by the co-sensitization of ZnO with dye and CuInSe nanocrystals. Dalton Transactions, 2015, 44, 12516-12521.	1.6	6

#	Article	IF	CITATIONS
55	Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems. Journal of Materiomics, 2015, 1, 3-21.	2.8	100
56	Efficient charge-transport in hybrid lead iodide perovskite solar cells. Dalton Transactions, 2015, 44, 16914-16922.	1.6	20
57	Forsythia Flower as Natural Photosensitizer for Dye-sensitized Solar Cells. , 2015, , .		0
58	Mechanisms of electromechanical coupling in strain based scanning probe microscopy. Applied Physics Letters, 2014, 104, .	1.5	121
59	Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy. Applied Physics Letters, 2014, 105, .	1.5	41
60	Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids. Carbohydrate Polymers, 2014, 99, 166-172.	5.1	40
61	Environmentally-friendly sonochemistry synthesis of hybrids from lignocelluloses and silver. Carbohydrate Polymers, 2014, 102, 445-452.	5.1	14
62	Preparation of black BiOCl with visible light photocatalytic activity by Fe reduction. Materials Letters, 2014, 116, 98-100.	1.3	13
63	Preparation and characterization of the continuous titanium-doped ZrO2 mesoporous fibers with large surface area. Journal of Porous Materials, 2014, 21, 105-112.	1.3	10
64	Facile synthesis of superparamagnetic mesoporous zeolite microspheres for the capacious enrichment of enzymes and proteins. Dalton Transactions, 2014, 43, 406-409.	1.6	2
65	Facile synthesis of CuInGaS2 quantum dot nanoparticles for bilayer-sensitized solar cells. Dalton Transactions, 2014, 43, 16588-16592.	1.6	10
66	Ce-doped SiO2@TiO2 nanocomposite as an effective visible light photocatalyst. Journal of Alloys and Compounds, 2014, 585, 800-804.	2.8	43
67	Ultrasonic-Assisted Synthesis of Cellulose/Cu(OH) ₂ /CuO Hybrids and Its Thermal Transformation to CuO and Cu/C. Science of Advanced Materials, 2014, 6, 1117-1125.	0.1	13
68	Hydrothermal epitaxial multiferroic BiFeO3 thick film by addition of the PVA. Journal of Alloys and Compounds, 2013, 577, 44-48.	2.8	21
69	Dualâ€Mesoporous ZSMâ€5 Zeolite with Highly <i>b</i> à€Axisâ€Oriented Large Mesopore Channels for the Production of Benzoin Ethyl Ether. Chemistry - A European Journal, 2013, 19, 10017-10023.	1.7	48
70	CTAB-templated mesoporous TS-1 zeolites as active catalysts in a desulfurization process: the decreased hydrophobicity is more favourable in thiophene oxidation. RSC Advances, 2013, 3, 4193.	1.7	51
71	High resolution quantitative piezoresponse force microscopy of BiFeO ₃ nanofibers with dramatically enhanced sensitivity. Nanoscale, 2012, 4, 408-413.	2.8	82
72	Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy. Applied Physics Letters, 2012, 101, 063901.	1.5	54

#	Article	IF	CITATIONS
73	Mesoporous bioactive glass-coated poly(l-lactic acid) scaffolds: a sustained antibioticdrug release system for bone repairing. Journal of Materials Chemistry, 2011, 21, 1064-1072.	6.7	74
74	Hierarchical Mesoporous Zeolites: Direct Selfâ€Assembly Synthesis in a Conventional Surfactant Solution by Kinetic Control over the Zeolite Seed Formation. Chemistry - A European Journal, 2011, 17, 14618-14627.	1.7	156
75	A micro/mesoporous aluminosilicate: key factors affecting framework crystallization during steam-assisted synthesis and its catalytic property. Journal of Materials Chemistry, 2010, 20, 6764.	6.7	46
76	Preparation of millimetre-sized mesoporous carbon spheres as an effective bilirubin adsorbent and their blood compatibility. Chemical Communications, 2010, 46, 7127.	2.2	64
77	Photocatalytic performances of mesoporous TiO2 films doped with gold clusters. Journal of Materials Chemistry, 2010, 20, 2831.	6.7	36
78	Synthesis and Characteristics of La Doped Ceria–Zirconia Composite with Uniform Nano-Crystallite Dispersion. Science of Advanced Materials, 2010, 2, 43-50.	0.1	1
79	Fabrication of mesoporous zeolite microspheres by a one-pot dual-functional templating approach. Journal of Materials Chemistry, 2009, 19, 7614.	6.7	52
80	Bottom-up tailoring of nonionic surfactant-templated mesoporous silica nanomaterials by a novel composite liquid crystal templating mechanism. Journal of Materials Chemistry, 2009, 19, 6498.	6.7	30
81	Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features. Journal of Materials Chemistry, 2009, 19, 3395.	6.7	64
82	Direct fabrication of mesoporous zeolite with a hollow capsular structure. Chemical Communications, 2009, , 7578.	2.2	84
83	Enhancement in electrochemical catalytic activity of mesoporous RuOxHy and Pt/RuOxHy by gas treatment. Dalton Transactions, 2009, , 3395.	1.6	9
84	A Simple Templateâ€Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and Their Electrochemical Properties. Advanced Functional Materials, 2008, 18, 1544-1554.	7.8	254
85	Electrochemical and oxygen desorption properties of nanostructured ternary compound NaxMnO2 directly templated from mesoporous SBA-15. Microporous and Mesoporous Materials, 2008, 116, 432-438.	2.2	10
86	Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance. Journal of Materials Chemistry, 2007, 17, 855.	6.7	78