Petr Král

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7956429/publications.pdf

Version: 2024-02-01

		1307594	1281871
36	167	7	11
papers	citations	h-index	g-index
36	36	36	145
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Successive Grinding and Polishing Effect on the Retained Austenite in the Surface of 42CrMo4 Steel. Metals, 2022, 12, 119.	2.3	O
2	Creep Resistance of S304H Austenitic Steel Processed by High-Pressure Sliding. Materials, 2022, 15, 331.	2.9	4
3	Influence of Cryo-Processing and Post-SPD Annealing on Creep Behavior of CP Titanium. Materials, 2022, 15, 1646.	2.9	1
4	High Temperature Creep Behaviour of Cast Nickel-Based Superalloys INC 713 LC, B1914 and MAR-M247. Metals, 2021, 11, 152.	2.3	7
5	Influence of High Pressure Sliding and Rotary Swaging on Creep Behavior of P92 Steel at 500 °C. Metals, 2021, 11, 2044.	2.3	5
6	The Effect of Predeformation on Creep Strength of 9% Cr Steel. Materials, 2020, 13, 5330.	2.9	6
7	Algorithmization and application of constitutive equations for modeling the plane stress state of concrete. AIP Conference Proceedings, 2020, , .	0.4	O
8	Using the inverse identification of parameters of a nonlinear concrete material model for analysis of RC structural element. AIP Conference Proceedings, 2019, , .	0.4	0
9	Modelling uniaxial compression of concrete specimen with utilization of nonlinear material models inside ANSYS and RFEM. AIP Conference Proceedings, 2019, , .	0.4	O
10	Four-Point Bending Test on a High Reinforced Concrete Beam: Nonlinear Numerical Analysis Using Material Parameter Identification. IOP Conference Series: Materials Science and Engineering, 2019, 471, 052052.	0.6	0
11	Using noise to generate the material structure of concrete. AIP Conference Proceedings, 2018, , .	0.4	O
12	Sensitivity analysis and optimization as tools for the inverse concrete material model parameter identification. AIP Conference Proceedings, $2018, \ldots$	0.4	2
13	Concrete Targets with Heterogeneities under Impact Loading. Advances in Military Technology, 2018, 13, 107-118.	0.6	1
14	Identification of Concrete Material Model Parameters Using Optimisation Algorithms. Advances in Military Technology, 2018, 13, 33-45.	0.6	2
15	Identification of the Parameters of a Concrete Damage Material Model. Procedia Engineering, 2017, 172, 578-585.	1,2	16
16	Improved Sensitivity Analysis in the Inverse Identification of the Parameters of a Nonlinear Material Model. Procedia Engineering, 2017, 172, 347-354.	1.2	5
17	Simulating randomized failure of concrete targets. , 2017, , .		2
18	Steel Fibre Reinforced Concrete Simulation with the SPH Method. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032070.	0.6	1

#	Article	IF	CITATIONS
19	Concept and numerical simulations of a reactive anti-fragment armour layer. AIP Conference Proceedings, 2017, , .	0.4	O
20	Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032079.	0.6	1
21	Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032078.	0.6	3
22	Conversion of Fractal Fields into Heterogeneities inside SPH Simulations. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032024.	0.6	0
23	Optimization of the material parameters of the continuous surface cap model for concrete., 2017,,.		4
24	Inverse identification of the material parameters of a nonlinear concrete constitutive model based on the triaxial compression strength testing. Frattura Ed Integrita Strutturale, 2017, 11, 38-46.	0.9	7
25	Comparison of responses of concrete damage material models with respect to optimization-based material parameter identification. AIP Conference Proceedings, 2017, , .	0.4	O
26	Parameter Identification for a Multivariable Nonlinear Constitutive Model inside ANSYS Workbench. Procedia Engineering, 2016, 161, 892-897.	1.2	13
27	Influence of SPH Regularity and Parameters in Dynamic Fracture Phenomena. Procedia Engineering, 2016, 161, 489-496.	1.2	5
28	Creep in an electrodeposited nickel. Journal of Materials Science, 2013, 48, 4780-4788.	3.7	9
29	Effect of severe plastic deformation on creep behaviour of a Ti–6Al–4V alloy. Journal of Materials Science, 2013, 48, 4789-4795.	3.7	30
30	QUANTITATIVE CHARACTERIZATION OF MICROSTRUCTURE OF PURE COPPER PROCESSED BY ECAP. Image Analysis and Stereology, 2013, 32, 65.	0.9	8
31	Quantitative Characterization of Microstructure in Copper Processed by Equal-Channel Angular Pressing. Materials Science Forum, 2010, 667-669, 235-240.	0.3	2
32	Effect of Equal-Channel Angular Pressing on the Creep Resistance of Precipitation-Strengthened Alloys. Materials Science Forum, 2010, 667-669, 897-902.	0.3	8
33	Microstructure Stability and Creep Behaviour of a Cu-0.2wt.%Zr Alloy Processed by Equal-Channel Angular Pressing. Materials Science Forum, 2010, 667-669, 821-826.	0.3	7
34	Some factors affecting the creep behaviour of metallic materials processed by equal-channel angular pressing. International Journal of Materials Research, 2009, 100, 762-766.	0.3	10
35	An Evaluation of Creep Mechanisms in Ultrafine-Grained Metals. Key Engineering Materials, 0, 465, 382-385.	0.4	8
36	Modelling the Tensile Softening Behaviour of Concrete in LS-Dyna Software. IOP Conference Series: Materials Science and Engineering, 0, 960, 042084.	0.6	0