
Michael W Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7956127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Central nervous system control of food intake. Nature, 2000, 404, 661-671.	13.7	5,309
2	Obesity is associated with hypothalamic injury in rodents and humans. Journal of Clinical Investigation, 2012, 122, 153-162.	3.9	1,448
3	Signals That Regulate Food Intake and Energy Homeostasis. Science, 1998, 280, 1378-1383.	6.0	1,063
4	Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience, 1998, 1, 271-272.	7.1	987
5	Cerebrospinal fluid leptin levels: Relationship to plasma levels and to adiposity in humans. Nature Medicine, 1996, 2, 589-593.	15.2	922
6	STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 2003, 421, 856-859.	13.7	914
7	Leptin Increases Hypothalamic Pro-opiomelanocortin mRNA Expression in the Rostral Arcuate Nucleus. Diabetes, 1997, 46, 2119-2123.	0.3	785
8	Diabetes, Obesity, and the Brain. Science, 2005, 307, 375-379.	6.0	743
9	Obesity and leptin resistance: distinguishing cause from effect. Trends in Endocrinology and Metabolism, 2010, 21, 643-651.	3.1	668
10	Key enzyme in leptin-induced anorexia. Nature, 2001, 413, 794-795.	13.7	606
11	Insulin in the Brain: A Hormonal Regulator of Energy Balance*. Endocrine Reviews, 1992, 13, 387-414.	8.9	568
12	Neurobiology of food intake in health and disease. Nature Reviews Neuroscience, 2014, 15, 367-378.	4.9	536
13	Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E1003-E1012.	1.8	487
14	Melanocortin receptors in leptin effects. Nature, 1997, 390, 349-349.	13.7	456
15	Insulin Activation of Phosphatidylinositol 3-Kinase in the Hypothalamic Arcuate Nucleus: A Key Mediator of Insulin-Induced Anorexia. Diabetes, 2003, 52, 227-231.	0.3	441
16	Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocrine Reviews, 2017, 38, 267-296.	8.9	437
17	Genetic approaches to studying energy balance: perception and integration. Nature Reviews Genetics, 2002, 3, 589-600.	7.7	361
18	Evidence That the Caudal Brainstem Is a Target for the Inhibitory Effect of Leptin on Food Intake. Endocrinology, 2002, 143, 239-246.	1.4	349

#	Article	IF	CITATIONS
19	Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Frontiers in Neuroendocrinology, 2003, 24, 1-10.	2.5	344
20	Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Research, 1999, 848, 114-123.	1.1	341
21	Is the Energy Homeostasis System Inherently Biased Toward Weight Gain?. Diabetes, 2003, 52, 232-238.	0.3	323
22	Insulin Signaling in the Central Nervous System: A Critical Role in Metabolic Homeostasis and Disease From C. elegans to Humans. Diabetes, 2005, 54, 1264-1276.	0.3	312
23	Genetics and Pathophysiology of Human Obesity. Annual Review of Medicine, 2003, 54, 453-471.	5.0	308
24	Food Intake and the Regulation of Body Weight. Annual Review of Psychology, 2000, 51, 255-277.	9.9	293
25	Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R87-R96.	0.9	285
26	Leptin and the Central Nervous System Control of Glucose Metabolism. Physiological Reviews, 2011, 91, 389-411.	13.1	271
27	PI3K integrates the action of insulin and leptin on hypothalamic neurons. Journal of Clinical Investigation, 2005, 115, 951-958.	3.9	262
28	Cooperation between brain and islet in glucose homeostasis and diabetes. Nature, 2013, 503, 59-66.	13.7	261
29	Minireview: Inflammation and Obesity Pathogenesis: The Hypothalamus Heats Up. Endocrinology, 2010, 151, 4109-4115.	1.4	260
30	Evidence that Intestinal Glucagon-Like Peptide-1 Plays a Physiological Role in Satiety. Endocrinology, 2009, 150, 1680-1687.	1.4	256
31	Neuroendocrine Responses to Starvation and Weight Loss. New England Journal of Medicine, 1997, 336, 1802-1811.	13.9	254
32	CENTRAL INSULIN ADMINISTRATION REDUCES NEUROPEPTIDE Y mRNA EXPRESSION IN THE ARCUATE NUCLEUS OF FOOD-DEPRIVED LEAN (Fa/Fa) BUT NOT OBESE (fa/fa) ZUCKER RATS. Endocrinology, 1991, 128, 2645-2647.	1.4	248
33	Fibroblast Growth Factor 21 Action in the Brain Increases Energy Expenditure and Insulin Sensitivity in Obese Rats. Diabetes, 2010, 59, 1817-1824.	0.3	248
34	Long-term orexigenic effects of AgRP-(83—132) involve mechanisms other than melanocortin receptor blockade. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R47-R52.	0.9	241
35	Model for the regulation of energy balance and adiposity by the central nervous system. American Journal of Clinical Nutrition, 1999, 69, 584-596.	2.2	236
36	Regulation of Food Intake, Energy Balance, and Body Fat Mass: Implications for the Pathogenesis and Treatment of Obesity. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 745-755.	1.8	219

#	Article	IF	CITATIONS
37	Hormones and diet, but not body weight, control hypothalamic microglial activity. Clia, 2014, 62, 17-25.	2.5	203
38	Leptin action in the forebrain regulates the hindbrain response to satiety signals. Journal of Clinical Investigation, 2005, 115, 703-710.	3.9	202
39	Disproportionately Elevated Proinsulin in Pima Indians with Noninsulin-Dependent Diabetes Mellitus*. Journal of Clinical Endocrinology and Metabolism, 1990, 70, 1247-1253.	1.8	198
40	Reversal of Cancer Anorexia by Blockade of Central Melanocortin Receptors in Rats. Endocrinology, 2001, 142, 3292-3301.	1.4	196
41	Assessment of Feeding Behavior in Laboratory Mice. Cell Metabolism, 2010, 12, 10-17.	7.2	196
42	Role of the CNS Melanocortin System in the Response to Overfeeding. Journal of Neuroscience, 1999, 19, 2362-2367.	1.7	194
43	Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends in Endocrinology and Metabolism, 2004, 15, 362-369.	3.1	192
44	Parabrachial CGRP Neurons Control Meal Termination. Cell Metabolism, 2016, 23, 811-820.	7.2	189
45	Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E1051-E1057.	1.8	186
46	FGF19 action in the brain induces insulin-independent glucose lowering. Journal of Clinical Investigation, 2013, 123, 4799-4808.	3.9	183
47	Leptin Receptor Long-form Splice-variant Protein Expression in Neuron Cell Bodies of the Brain and Co-localization with Neuropeptide Y mRNA in the Arcuate Nucleus. Journal of Histochemistry and Cytochemistry, 1999, 47, 353-362.	1.3	181
48	Leptin and Insulin Action in the Central Nervous System. Nutrition Reviews, 2002, 60, S20-S29.	2.6	180
49	Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E134-E144.	1.8	172
50	FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nature Communications, 2015, 6, 7079.	5.8	172
51	Keeping hunger at bay. Nature, 2002, 418, 595-597.	13.7	161
52	Hypothalamic Melanin-Concentrating Hormone and Estrogen-Induced Weight Loss. Journal of Neuroscience, 2000, 20, 8637-8642.	1.7	160
53	Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metabolism, 2006, 3, 67-73.	7.2	156
54	Arcuate Nucleus-Specific Leptin Receptor Gene Therapy Attenuates the Obesity Phenotype of Koletsky (fak/fak) Rats. Endocrinology, 2003, 144, 2016-2024.	1.4	155

#	Article	IF	CITATIONS
55	Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Research, 2003, 993, 30-41.	1.1	151
56	Leptin Activates a Novel CNS Mechanism for Insulin-Independent Normalization of Severe Diabetic Hyperglycemia. Endocrinology, 2011, 152, 394-404.	1.4	148
57	Functional identification of a neurocircuit regulating blood glucose. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2073-82.	3.3	143
58	Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R431-R438.	0.9	141
59	Hypothalamic Leptin Signaling Regulates Hepatic Insulin Sensitivity via a Neurocircuit Involving the Vagus Nerve. Endocrinology, 2009, 150, 4502-4511.	1.4	137
60	Expression of Peroxisome Proliferator-Activated Receptor-Î ³ in Key Neuronal Subsets Regulating Glucose Metabolism and Energy Homeostasis. Endocrinology, 2009, 150, 707-712.	1.4	135
61	Leptin Deficiency Causes Insulin Resistance Induced by Uncontrolled Diabetes. Diabetes, 2010, 59, 1626-1634.	0.3	127
62	Effect of intracerebroventricular α-MSH on food intake, adiposity, c-Fos induction, and neuropeptide expression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R695-R703.	0.9	125
63	Brain Pathways Controlling Food Intake and Body Weight. Experimental Biology and Medicine, 2001, 226, 978-981.	1.1	119
64	Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nature Medicine, 2016, 22, 800-806.	15.2	119
65	Central Nervous System Regulation of Food Intake. Obesity, 2006, 14, 1S-8S.	1.5	118
66	Exercise, Energy Intake, Glucose Homeostasis, and the Brain. Journal of Neuroscience, 2014, 34, 15139-15149.	1.7	117
67	Differential effect of fasting on hypothalamic expression of genes encoding neuropeptide Y, galanin, and glutamic acid decarboxylase. Brain Research Bulletin, 1993, 31, 361-367.	1.4	113
68	Leptin Deficiency Induced by Fasting Impairs the Satiety Response to Cholecystokinin**This work was supported by grants from the NIH (DK-12829, DK-52989, and NS-32272) and by the Royalty Research Fund, the Diabetes Endocrinology Research Center, and the Clinical Nutrition Research Unit of the University of Washington Endocrinology, 2000, 141, 4442-4448.	1.4	113
69	An Integrative View of Obesity. Science, 2007, 318, 928-929.	6.0	111
70	Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity, 2015, 23, 2142-2148.	1.5	107
71	Hypothalamic, Metabolic, and Behavioral Responses to Pharmacological Inhibition of CNS Melanocortin Signaling in Rats. Journal of Neuroscience, 2001, 21, 3639-3645.	1.7	100
72	Treatment with a Somatostatin Analog Decreases Pancreatic B-Cell and Whole Body Sensitivity to Glucose*. Journal of Clinical Endocrinology and Metabolism, 1990, 71, 994-1002.	1.8	99

#	Article	IF	CITATIONS
73	Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nature Neuroscience, 2017, 20, 934-942.	7.1	93
74	Adiposity Signaling and Biological Defense Against Weight Gain: Absence of Protection or Central Hormone Resistance?. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5889-5897.	1.8	86
75	CNS Melanocortin System Involvement in the Regulation of Food Intake. Hormones and Behavior, 2000, 37, 299-305.	1.0	83
76	Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R640-R658.	0.9	82
77	Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Research, 2006, 1112, 169-178.	1.1	81
78	M2 Macrophage Polarization Mediates Anti-inflammatory Effects of Endothelial Nitric Oxide Signaling. Diabetes, 2015, 64, 2836-2846.	0.3	80
79	Receptors for Tumor Necrosis Factor-α Play a Protective Role against Obesity and Alter Adipose Tissue Macrophage Status. Endocrinology, 2009, 150, 4124-4134.	1.4	76
80	Effect of Fasting and Leptin Deficiency on Hypothalamic Neuropeptide Y Gene Transcription <i>in Vivo</i> Revealed by Expression of a <i>lacZ</i> Reporter Gene ¹ . Endocrinology, 1998, 139, 2629-2635.	1.4	75
81	Effect of fasting on regional levels of neuropeptide Y mRNA and insulin receptors in the rat hypothalamus: An autoradiographic study. Molecular and Cellular Neurosciences, 1992, 3, 199-205.	1.0	74
82	Neuropeptide Y Is Required for Hyperphagic Feeding in Response to Neuroglucopenia. Endocrinology, 2004, 145, 3363-3368.	1.4	74
83	Attenuation of Diabetic Hyperphagia in Neuropeptide Y-Deficient Mice. Diabetes, 2002, 51, 778-783.	0.3	72
84	BDNF Action in the Brain Attenuates Diabetic Hyperglycemia via Insulin-Independent Inhibition of Hepatic Glucose Production. Diabetes, 2013, 62, 1512-1518.	0.3	72
85	Central nervous system regulation of organismal energy and glucose homeostasis. Nature Metabolism, 2021, 3, 737-750.	5.1	66
86	Melanocortins and body weight: a tale of two receptors. Nature Genetics, 2000, 26, 8-9.	9.4	62
87	Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R476-R484.	0.9	61
88	Reversal of Cancer Anorexia by Blockade of Central Melanocortin Receptors in Rats. Endocrinology, 2001, 142, 3292-3301.	1.4	59
89	The skinny on neurotrophins. Nature Neuroscience, 2003, 6, 655-656.	7.1	58
90	Does Hypothalamic Inflammation Cause Obesity?. Cell Metabolism, 2009, 10, 241-242.	7.2	57

#	Article	IF	CITATIONS
91	Immunocytochemical detection of insulin receptor substrate-1 (IRS-1) in rat brain: colocalization with phosphotyrosine. Regulatory Peptides, 1993, 48, 257-266.	1.9	55
92	Evidence that elevated plasma corticosterone levels are the cause of reduced hypothalamic corticotrophin-releasing hormone gene expression in diabetes. Regulatory Peptides, 1997, 72, 105-112.	1.9	55
93	Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E47-E53.	1.8	54
94	Attenuated feeding responses to circadian and palatability cues in mice lacking neuropeptide Y. Peptides, 2005, 26, 2597-2602.	1.2	51
95	Leptin Signaling Is Required for Adaptive Changes in Food Intake, but Not Energy Expenditure, in Response to Different Thermal Conditions. PLoS ONE, 2015, 10, e0119391.	1.1	49
96	Chronic hindbrain administration of oxytocin is sufficient to elicit weight loss in diet-induced obese rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R357-R371.	0.9	47
97	Revisiting How the Brain Senses Glucose—And Why. Cell Metabolism, 2019, 29, 11-17.	7.2	47
98	Peptide signals regulating food intake and energy homeostasis. Canadian Journal of Physiology and Pharmacology, 2002, 80, 396-406.	0.7	43
99	SOCS-3 expression in leptin-sensitive neurons of the hypothalamus of fed and fasted rats. Regulatory Peptides, 2000, 92, 9-15.	1.9	42
100	Increased hypothalamic melanin concentrating hormone gene expression during energy restriction involves a melanocortin-independent, estrogen-sensitive mechanism. Peptides, 2004, 25, 667-674.	1.2	42
101	Distinct Neuronal Projections From the Hypothalamic Ventromedial Nucleus Mediate Glycemic and Behavioral Effects. Diabetes, 2018, 67, 2518-2529.	0.3	42
102	Melanocortin Signaling and Anorexia in Chronic Disease States. Annals of the New York Academy of Sciences, 2003, 994, 275-281.	1.8	39
103	Insulin resistance and obesity. Nature, 1999, 402, 860-861.	13.7	38
104	Peripheral Mechanisms Mediating the Sustained Antidiabetic Action of FGF1 in the Brain. Diabetes, 2019, 68, 654-664.	0.3	38
105	Evidence against hypothalamic-pituitary-adrenal axis suppression in the antidiabetic action of leptin. Journal of Clinical Investigation, 2015, 125, 4587-4591.	3.9	38
106	Perineuronal net formation during the critical period for neuronal maturation in the hypothalamic arcuate nucleus. Nature Metabolism, 2019, 1, 212-221.	5.1	35
107	Evidence That the Sympathetic Nervous System Elicits Rapid, Coordinated, and Reciprocal Adjustments of Insulin Secretion and Insulin Sensitivity During Cold Exposure. Diabetes, 2017, 66, 823-834.	0.3	34
108	The central fibroblast growth factor receptor/beta klotho system: Comprehensive mapping in <scp><i>Mus musculus</i></scp> and comparisons to nonhuman primate and human samples using an automated in situ hybridization platform. Journal of Comparative Neurology, 2019, 527, 2069-2085.	0.9	34

#	Article	IF	CITATIONS
109	Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nature Communications, 2020, 11, 4458.	5.8	34
110	Signal Transducer and Activator of Transcription (Stat) Binding Sites But Not Stat3 Are Required for Fasting-Induced Transcription of Agouti-Related Protein Messenger Ribonucleic Acid. Molecular Endocrinology, 2006, 20, 2591-2602.	3.7	33
111	How Should We Think About the Role of the Brain in Glucose Homeostasis and Diabetes?. Diabetes, 2017, 66, 1758-1765.	0.3	33
112	Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Reports, 2021, 36, 109362.	2.9	33
113	Leptin Deficiency Induced by Fasting Impairs the Satiety Response to Cholecystokinin. Endocrinology, 2000, 141, 4442-4448.	1.4	32
114	Cold-induced hyperphagia requires AgRP neuron activation in mice. ELife, 2020, 9, .	2.8	32
115	Hypothalamic perineuronal net assembly is required for sustained diabetes remission induced by fibroblast growth factor 1 in rats. Nature Metabolism, 2020, 2, 1025-1033.	5.1	28
116	Leptin receptor neurons in the dorsomedial hypothalamus regulate diurnal patterns of feeding, locomotion, and metabolism. ELife, 2021, 10, .	2.8	27
117	The Hypothalamic Arcuate Nucleus–Median Eminence Is a Target for Sustained Diabetes Remission Induced by Fibroblast Growth Factor 1. Diabetes, 2019, 68, 1054-1061.	0.3	26
118	Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes. Diabetologia, 2021, 64, 5-14.	2.9	26
119	Decoding perineuronal net glycan sulfation patterns in the Alzheimer's disease brain. Alzheimer's and Dementia, 2022, 18, 942-954.	0.4	26
120	Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response. Molecular Metabolism, 2015, 4, 561-568.	3.0	25
121	Rethinking the role of the brain in glucose homeostasis and diabetes pathogenesis. Journal of Clinical Investigation, 2019, 129, 3035-3037.	3.9	24
122	Central Nervous System Control of Glucose Homeostasis: A Therapeutic Target for Type 2 Diabetes?. Annual Review of Pharmacology and Toxicology, 2022, 62, 55-84.	4.2	24
123	Leptin and the brain: then and now. Journal of Clinical Investigation, 2013, 123, 2344-2345.	3.9	22
124	The Hypothalamus and Â-Cell Connection in the Gene-Targeting Era. Diabetes, 2010, 59, 2991-2993.	0.3	21
125	Orexins and appetite: The big picture of energy homeostasis gets a little bigger. Nature Medicine, 1998, 4, 385-386.	15.2	20
126	Deletion of Protein Kinase C λ in POMC Neurons Predisposes to Diet-Induced Obesity. Diabetes, 2017, 66, 920-934.	0.3	20

#	Article	IF	CITATIONS
127	Quantitative analysis of chondroitin sulfate disaccharides from human and rodent fixed brain tissue by electrospray ionization-tandem mass spectrometry. Glycobiology, 2019, 29, 847-860.	1.3	20
128	Metabolic, gastrointestinal, and CNS neuropeptide effects of brain leptin administration in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1425-R1433.	0.9	19
129	Regulation of Body Adiposity and the Problem of Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 233-238.	1.1	18
130	Out of synch: Clock mutation causes obesity in mice. Cell Metabolism, 2005, 1, 355-356.	7.2	18
131	Role of hypothalamic MAPK/ERK signaling and central action of FGF1 in diabetes remission. IScience, 2021, 24, 102944.	1.9	18
132	Rapid glutamate release in the mediobasal hypothalamus accompanies feeding and is exaggerated by an obesogenic food. Molecular Metabolism, 2013, 2, 116-122.	3.0	15
133	Vasodilator-stimulated phosphoprotein protects against vascular inflammation and insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E571-E579.	1.8	14
134	Central interleukin-1 (IL1) signaling is required for pharmacological, but not physiological, effects of leptin on energy balance. Brain Research, 2007, 1144, 101-106.	1.1	12
135	Genetic determinants of atherosclerosis, obesity, and energy balance in consomic mice. Mammalian Genome, 2014, 25, 549-563.	1.0	11
136	Wasting illness as a disorder of body weight regulation. Proceedings of the Nutrition Society, 1997, 56, 785-791.	0.4	9
137	An inconvenient truth about obesity. Molecular Metabolism, 2012, 1, 2-4.	3.0	9
138	Regulation of Appetite and Body Weight. Hospital Practice (1995), 1997, 32, 109-119.	0.5	8
139	A method for high-throughput functional imaging of single cells within heterogeneous cell preparations. Scientific Reports, 2016, 6, 39319.	1.6	6
140	In vivo structure-function studies of human hepatic lipase: the catalytic function rescues the lean phenotype of HL-deficient (<i>hl</i> ^{â^'/â^'}) mice. Physiological Reports, 2015, 3, e12365.	0.7	5
141	The role of vasodilator-stimulated phosphoprotein (VASP) in the control of hepatic gluconeogenic gene expression. PLoS ONE, 2019, 14, e0215601.	1.1	4
142	Glucoregulatory responses to hypothalamic preoptic area cooling. Brain Research, 2019, 1710, 136-145.	1.1	3
143	Daniel Porte Jr.: A Leader in Our Understanding of the Role of Defective Insulin Secretion and Action in Obesity and Type 2 Diabetes. Diabetes Care, 2020, 43, 704-709.	4.3	3
144	A Role for Natriuretic Peptides in the Central Control of Energy Balance?. Diabetes, 2013, 62, 1379-1381.	0.3	2

#	Article	IF	CITATIONS
145	Editorial: Can The History of Modern Endocrinology Shape the Future of Obesity?. Molecular Endocrinology, 2015, 29, 155-157.	3.7	2
146	Insulin receptors facilitate insulin transport into the central nervous system. , 1992, , .		0
147	Response to Comment on: Kaiyala et al. (2010) Identification of Body Fat Mass as a Major Determinant of Metabolic Rate in Mice. Diabetes;59:1657–1666. Diabetes, 2011, 60, e4-e4.	0.3	0
148	Combined micro-osmotic pump infusion and intracerebroventricular injection to study FGF1 signaling pathways in the mouse brain. STAR Protocols, 2022, 3, 101329.	0.5	0