
Andrew D Weinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7955507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-1 and ICOS coexpression identifies tumor-reactive CD4+ T cells in human solid tumors. Journal of Clinical Investigation, 2022, 132, .	3.9	37
2	Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nature Communications, 2021, 12, 1047.	5.8	96
3	Multi-antigen Vaccination With Simultaneous Engagement of the OX40 Receptor Delays Malignant Mesothelioma Growth and Increases Survival in Animal Models. Frontiers in Oncology, 2019, 9, 720.	1.3	7
4	OX40 Agonist Tumor Immunotherapy Does Not Impact Regulatory T Cell Suppressive Function. Journal of Immunology, 2019, 203, 2011-2019.	0.4	28
5	Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4. Genome Medicine, 2019, 11, 87.	3.6	44
6	Late-Stage Tumor Regression after PD-L1 Blockade Plus a Concurrent OX40 Agonist. Cancer Immunology Research, 2019, 7, 269-281.	1.6	31
7	Potent Immune Modulation by MEDI6383, an Engineered Human OX40 Ligand IgG4P Fc Fusion Protein. Molecular Cancer Therapeutics, 2018, 17, 1024-1038.	1.9	31
8	Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nature Communications, 2018, 9, 2724.	5.8	578
9	OX40, PDâ€1 and CTLAâ€4 are selectively expressed on tumorâ€infiltrating T cells in head and neck cancer. Clinical and Translational Immunology, 2016, 5, e70.	1.7	102
10	Immunotherapy Expands and Maintains the Function of High-Affinity Tumor-Infiltrating CD8 T Cells In Situ. Journal of Immunology, 2016, 197, 2509-2521.	0.4	25
11	Combinational Immunotherapy with Allo-DRibble Vaccines and Anti-OX40 Co-Stimulation Leads to Generation of Cross-Reactive Effector T Cells and Tumor Regression. Scientific Reports, 2016, 6, 37558.	1.6	28
12	OX40 signaling in head and neck squamous cell carcinoma: Overcoming immunosuppression in the tumor microenvironment. Oral Oncology, 2016, 52, 1-10.	0.8	56
13	STAT3 Signaling Is Required for Optimal Regression of Large Established Tumors in Mice Treated with Anti-OX40 and TGFÎ ² Receptor Blockade. Cancer Immunology Research, 2015, 3, 526-535.	1.6	18
14	Early-onset age-related changes in dendritic cell subsets can impair antigen-specific T helper 1 (Th1) CD4 T cell priming. Journal of Leukocyte Biology, 2014, 96, 245-254.	1.5	12
15	Caloric restriction maintains OX40 agonist-mediated tumor immunity and CD4 T cell priming during aging. Cancer Immunology, Immunotherapy, 2014, 63, 615-626.	2.0	30
16	The TNFRs OX40, 4-1BB, and CD40 as targets for cancer immunotherapy. Current Opinion in Immunology, 2013, 25, 230-237.	2.4	138
17	OX40 Is a Potent Immune-Stimulating Target in Late-Stage Cancer Patients. Cancer Research, 2013, 73, 7189-7198.	0.4	410
18	Defining a functionally distinct subset of human memory CD4 ⁺ T cells that are CD25 ^{POS} and FOXP3 ^{NEG} . European Journal of Immunology, 2012, 42, 1893-1905.	1.6	40

#	Article	IF	CITATIONS
19	The small molecule TGF-Î ² signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunology, Immunotherapy, 2012, 61, 511-521.	2.0	55
20	Targeting macrophages in the tumour environment to enhance the efficacy of αOX40 therapy. Immunology, 2012, 136, 437-447.	2.0	25
21	Dual Anti-OX40/IL-2 Therapy Augments Tumor Immunotherapy via IL-2R-Mediated Regulation of OX40 Expression. PLoS ONE, 2012, 7, e34467.	1.1	41
22	Treatment of Melanoma with Agonist Immune Costimulatory Agents. , 2012, , 307-331.		0
23	Science gone translational: the OX40 agonist story. Immunological Reviews, 2011, 244, 218-231.	2.8	130
24	OX40 engagement stabilizes Mxd4 and Mnt protein levels in antigenâ€stimulated T cells leading to an increase in cell survival. European Journal of Immunology, 2011, 41, 1024-1034.	1.6	14
25	Adjuvant Therapy With Agonistic Antibodies to CD134 (OX40) Increases Local Control After Surgical or Radiation Therapy of Cancer in Mice. Journal of Immunotherapy, 2010, 33, 798-809.	1.2	142
26	Signaling Through OX40 Enhances Antitumor Immunity. Seminars in Oncology, 2010, 37, 524-532.	0.8	127
27	OX40 Ligand Regulates Inflammation and Mortality in the Innate Immune Response to Sepsis. Journal of Immunology, 2010, 185, 4856-4862.	0.4	51
28	The Role of OX40 (CD134) in T-Cell Memory Generation. Advances in Experimental Medicine and Biology, 2010, 684, 57-68.	0.8	12
29	The Role of OX40-Mediated Co-stimulation in T-Cell Activation and Survival. Critical Reviews in Immunology, 2009, 29, 187-201.	1.0	161
30	Cutting Edge: OX40 Agonists Can Drive Regulatory T Cell Expansion if the Cytokine Milieu Is Right. Journal of Immunology, 2009, 183, 4853-4857.	0.4	132
31	OX40-Enhanced Tumor Rejection and Effector T Cell Differentiation Decreases with Age. Journal of Immunology, 2009, 182, 1481-1489.	0.4	46
32	OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. Journal of Experimental Medicine, 2009, 206, 1103-1116.	4.2	195
33	Ligation of the OX40 coâ€stimulatory receptor reverses selfâ€Ag and tumorâ€induced CD8 Tâ€cell anergy <i>in vivo</i> . European Journal of Immunology, 2009, 39, 2184-2194.	1.6	46
34	The effect of aging on OX40 agonist-mediated cancer immunotherapy. Cancer Immunology, Immunotherapy, 2009, 58, 1941-1947.	2.0	17
35	OX40 (CD134) and OX40L. Advances in Experimental Medicine and Biology, 2009, 647, 94-107.	0.8	31
36	Ligation of the OX40 coâ€stimulatory receptor reverses selfâ€Ag and tumorâ€induced CD8 Tâ€cell anergy <i>in vivo</i> . European Journal of Immunology, 2009, 39, 2184-2194.	1.6	1

ANDREW D WEINBERG

#	Article	IF	CITATIONS
37	Manipulating TNF Receptors to Enhance Tumor Immunity for the Treatment of Cancer. , 2009, , 319-336.		0
38	OX40 (CD134) expression in sentinel lymph nodes correlates with prognostic features of primary melanomas. American Journal of Surgery, 2008, 195, 621-625.	0.9	18
39	OX40 Agonist Therapy Enhances CD8 Infiltration and Decreases Immune Suppression in the Tumor. Cancer Research, 2008, 68, 5206-5215.	0.4	149
40	IL-12 Is Required for Anti-OX40-Mediated CD4 T Cell Survival. Journal of Immunology, 2008, 180, 2140-2148.	0.4	65
41	Novel regulation of CD8 T cellâ€specific OX40 expression via an ILâ€2 and JAK3â€dependent mechanism. FASEB Journal, 2008, 22, 1076.21.	0.2	0
42	Defects in the Acquisition of CD8 T Cell Effector Function after Priming with Tumor or Soluble Antigen Can Be Overcome by the Addition of an OX40 Agonist. Journal of Immunology, 2007, 179, 7244-7253.	0.4	79
43	Development and characterization of recombinant human Fc:OX40L fusion protein linked via a coiled-coil trimerization domain. Molecular Immunology, 2007, 44, 3112-3121.	1.0	51
44	Targeting OX40 and OX40L for the Treatment of Autoimmunity and Cancer. Critical Reviews in Immunology, 2007, 27, 415-436.	1.0	53
45	Anti-OX40 stimulationin vivo enhances CD8+ memory T cell survival and significantly increases recall responses. European Journal of Immunology, 2007, 37, 157-166.	1.6	84
46	Anti-OX40 (CD134) Administration to Nonhuman Primates: Immunostimulatory Effects and Toxicokinetic Study. Journal of Immunotherapy, 2006, 29, 575-585.	1.2	55
47	OX40 (CD134) engagement drives differentiationof CD4+ T cells to effector cells. European Journal of Immunology, 2006, 36, 1093-1103.	1.6	53
48	IL-18 Bridges Innate and Adaptive Immunity through IFN-γ and the CD134 Pathway. Journal of Immunology, 2006, 177, 234-245.	0.4	77
49	Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood, 2005, 105, 2845-2851.	0.6	358
50	Activation Pathways Implicate Anti-HLA-DP and Anti-LFA-1 Antibodies as Lead Candidates for Intervention in Chronic Berylliosis. Journal of Immunology, 2005, 174, 4316-4324.	0.4	16
51	Modulation of TNF Receptor Family Members to Inhibit Autoimmune Disease. Inflammation and Allergy: Drug Targets, 2005, 4, 195-203.	3.1	10
52	The generation of T cell memory: a review describing the molecular and cellular events following OX40 (CD134) engagement. Journal of Leukocyte Biology, 2004, 75, 962-972.	1.5	50
53	A Signal through OX40 (CD134) Allows Anergic, Autoreactive T Cells to Acquire Effector Cell Functions. Journal of Immunology, 2004, 172, 6735-6743.	0.4	88
54	4-1BB and OX40 stimulation enhance CD8 and CD4 T-cell responses to a DNA prime, poxvirus boost vaccine. Immunology, 2004, 112, 559-566.	2.0	61

ANDREW D WEINBERG

#	Article	IF	CITATIONS
55	Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nature Reviews Immunology, 2004, 4, 420-431.	10.6	297
56	OX40-Mediated Memory T Cell Generation Is TNF Receptor-Associated Factor 2 Dependent. Journal of Immunology, 2003, 171, 5997-6005.	0.4	69
57	Survival in human colorectal cancer correlates with expression of the T-cell costimulatory molecule OX-40 (CD134). American Journal of Surgery, 2002, 183, 512-518.	0.9	80
58	OX40: targeted immunotherapy - implications for tempering autoimmunity and enhancing vaccines. Trends in Immunology, 2002, 23, 102-109.	2.9	109
59	Induction of Anti-Mammary Cancer Immunity by Engaging the OX-40 Receptor in Vivo. Breast Cancer Research and Treatment, 2001, 67, 71-80.	1.1	71
60	Augmentation Versus Inhibition: Effects of Conjunctional OX-40 Receptor Monoclonal Antibody and IL-2 Treatment on Adoptive Immunotherapy of Advanced Tumor. Journal of Immunology, 2001, 167, 6669-6677.	0.4	77
61	Engagement of OX40 Enhances Antigen-Specific CD4+ T Cell Mobilization/Memory Development and Humoral Immunity: Comparison of αOX-40 with αCTLA-4. Journal of Immunology, 2001, 167, 6804-6811.	0.4	98
62	Engagement of the OX-40 Receptor In Vivo Enhances Antitumor Immunity. Journal of Immunology, 2000, 164, 2160-2169.	0.4	357
63	The OX40 Costimulatory Receptor Determines the Development of CD4 Memory by Regulating Primary Clonal Expansion. Journal of Immunology, 2000, 165, 3043-3050.	0.4	351
64	Danger and OX40 Receptor Signaling Synergize to Enhance Memory T Cell Survival by Inhibiting Peripheral Deletion. Journal of Immunology, 2000, 164, 107-112.	0.4	213
65	Immunohistochemical analysis of primary breast tumors and tumor-draining lymph nodes by means of the T-cell costimulatory molecule OX-40. American Journal of Surgery, 2000, 179, 400-406.	0.9	39
66	OX-40: life beyond the effector T cell stage. Seminars in Immunology, 1998, 10, 471-480.	2.7	138
67	Presence of the T-cell activation marker OX-40 on tumor infiltrating lymphocytes and draining lymph node cells from patients with melanoma and head and neck cancers. American Journal of Surgery, 1997, 174, 258-265.	0.9	112
68	The effect of TCR Vβ8 peptide protection and therapy on T cell populations isolated from the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 1994, 49, 161-170.	1.1	17
69	Lymphokine mRNA expression in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis is associated with a host recruited CD45R hi/CD4+ population during recovery. Journal of Neuroimmunology, 1993, 48, 105-117.	1.1	30