Chun-Sheng Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7955350/publications.pdf

Version: 2024-02-01

516710 552781 54 834 16 citations h-index papers

g-index 54 54 54 569 docs citations times ranked citing authors all docs

26

#	Article	IF	CITATIONS
1	Effects of the transverse electric field on nanosecond pulsed dielectric barrier discharge in atmospheric airflow. Plasma Science and Technology, 2020, 22, 055403.	1.5	6
2	Research on an unconfined spheromak and its current path in a magnetized coaxial plasma gun. Physics of Plasmas, 2020, 27, .	1.9	3
3	Global modeling on partial oxidation of methane to oxygenates and syngas in non-equilibrium plasma. Japanese Journal of Applied Physics, 2020, 59, 066003.	1.5	7
4	Effect of airflow on the space-time distribution of filaments in dielectric barrier discharge at atmospheric pressure. Physics of Plasmas, 2020, 27, .	1.9	12
5	Experimental study on the effects of airflow, magnetic field and combination of airflow with magnetic field on nanosecond pulsed dielectric barrier discharge in atmospheric air. Physics of Plasmas, 2020, 27, .	1.9	10
6	Optimization of discharge antenna turn and modulation of EEPFs and plasma parameters in dual-frequency cylindrical ICP source at different gas pressures. Journal of Applied Physics, 2020, 128,	2.5	2
7	Effects of aspect ratio on electron loss mechanisms and plasma uniformity in cylindrical inductively coupled plasma. Physics of Plasmas, 2020, 27, .	1.9	3
8	The Generation and Evolution of a Diffuse Nanosecond Pulsed Dielectric Barrier Discharge in Airflow. IEEE Transactions on Plasma Science, 2019, 47, 4312-4318.	1.3	8
9	Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source. Plasma Science and Technology, 2019, 21, 075401.	1.5	4
10	Comparative study on diffuse dielectric barrier discharges excited by unipolar positive versus bipolar pulses in atmospheric air. Journal of Applied Physics, 2019, 125, .	2.5	7
11	Modulation of electron energy distribution functions and plasma parameters in a dual-frequency cylindrical ICP source. Plasma Research Express, 2019, 1, 015008.	0.9	2
12	Characteristics of a dualâ€radioâ€requency cylindrical inductively coupled plasma. Contributions To Plasma Physics, 2019, 59, e201800029.	1.1	2
13	Experimental investigation on the repetitively nanosecond pulsed dielectric barrier discharge with the parallel magnetic field. Physics of Plasmas, 2018, 25, .	1.9	9
14	Effect of parallel magnetic field on repetitively unipolar nanosecond pulsed dielectric barrier discharge under different pulse repetition frequencies. Physics of Plasmas, 2018, 25, .	1.9	23
15	Fluid modeling of radical species generation mechanism in dense methane-air mixture streamer discharge. Physics of Plasmas, 2018, 25, .	1.9	15
16	Effects of direct current discharge on the spatial distribution of cylindrical inductively-coupled plasma at different gas pressures. Plasma Science and Technology, 2018, 20, 014005.	1.5	5
17	The effect of hydrogen peroxide concentration on the partial oxidation of methane to methanol in an atmospheric dielectric barrier discharge. AIP Advances, 2018, 8, .	1.3	4
18	A mechanistic study on partial oxidation of methane to methanol with hydrogen peroxide vapor in atmospheric dielectric barrier discharge. Japanese Journal of Applied Physics, 2018, 57, 096204.	1.5	7

#	Article	IF	CITATIONS
19	Experimental study on uniformity of dielectric barrier discharge generated by nanosecond pulse in atmospheric air. Physics of Plasmas, 2018, 25, 093505.	1.9	18
20	The effect of methane gas flow rate on the streamer propagation in an atmospheric-pressure methane-air plasma jet. Physics of Plasmas, 2018, 25, 093508.	1.9	9
21	Investigation of airflow effects on the dielectric barrier discharge with single/double discharge channel arrangement. Physics of Plasmas, 2018, 25, .	1.9	10
22	Breakdown characteristics of atmospheric dielectric barrier discharge in gas flow condition. Physics of Plasmas, 2018, 25, .	1.9	9
23	Plasma Actuator Performance Driven by Dual-Power Supply Voltage—AC High Voltage Superimposed With Pulse Bias Voltage. IEEE Transactions on Plasma Science, 2017, 45, 412-422.	1.3	6
24	Experimental investigation of SDBD plasma actuator driven by AC high voltage with a superimposed positive pulse bias voltage. Physics of Plasmas, 2017, 24, .	1.9	5
25	Influence of residual charge on repetitively nanosecond pulsed dielectric barrier discharges in atmospheric air. Physics of Plasmas, 2017, 24, .	1.9	17
26	Effects of airflow on the distribution of filaments in atmospheric AC dielectric barrier discharge. Physics of Plasmas, 2016, 23, .	1.9	26
27	Investigation of nanosecond pulsed dielectric barrier discharge using plate-to-plate electrode with asymmetric dielectric arrangement in airflow. Physics of Plasmas, 2016, 23, 053509.	1.9	16
28	The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air. Physics of Plasmas, 2016, 23, .	1.9	19
29	Improving thrust by pulse-induced breakdown enhancement in AC surface dielectric barrier discharge actuators for airflow control. Journal Physics D: Applied Physics, 2016, 49, 295203.	2.8	8
30	Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure. Plasma Science and Technology, 2016, 18, 1005-1011.	1.5	16
31	Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow. Plasma Science and Technology, 2016, 18, 520-524.	1.5	20
32	Airflow acceleration performance of asymmetric surface dielectric barrier discharge actuators at different exposed needle electrode heights. Journal of Applied Physics, 2015, 118, .	2.5	9
33	Mode Transition and Related Discharge Phenomena of a Tube Plasma Source Operating in Low-Pressure Pure Nitrogen Atmosphere. IEEE Transactions on Plasma Science, 2015, 43, 544-551.	1.3	10
34	Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages. Physics of Plasmas, 2015, 22, 043518.	1.9	6
35	Geometry Effects of SDBD Actuator on Atmospheric-Pressure Discharge Plasma Airflow Acceleration. IEEE Transactions on Plasma Science, 2015, 43, 3653-3661.	1.3	12
36	Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control. Journal of Applied Physics, 2015, 117, .	2.5	17

3

#	Article	IF	Citations
37	Comparative Study of the Surface Cleaning for Ar-/He-Based Plasma Jets at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2015, 43, 3193-3199.	1.3	13
38	Effects of Airflows on Nanosecond Pulsed Dielectric Barrier Discharge at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2015, 43, 3662-3667.	1.3	14
39	Repetitive Nanosecond Volume Diffuse Discharge Under Airflows. IEEE Transactions on Plasma Science, 2014, 42, 753-755.	1.3	17
40	Time-Resolved Observation of Self-Organized Pattern in an Atmospheric Pressure Dielectric-Barrier Discharges Plasma Jet. IEEE Transactions on Plasma Science, 2013, 41, 3135-3137.	1.3	1
41	Atmospheric pressure cold argon/oxygen plasma jet assisted by preionization by syringe needle electrode. , 2012, , .		1
42	Surface Cleaning Using an Atmospheric-Pressure Plasma Jet in \$hbox{O}_{2}/hbox{Ar}\$ Mixtures. IEEE Transactions on Plasma Science, 2012, 40, 2706-2710.	1.3	9
43	Discharge Characteristics of a Cold-Atmospheric-Plasma Jet Array Generated With Single-Electrode Configuration. IEEE Transactions on Plasma Science, 2012, 40, 1724-1729.	1.3	18
44	Investigations on an Atmospheric Dielectric Barrier Discharge Plasma Jet With a Concentric Wire-Mesh Cylinder Electrode Configuration. IEEE Transactions on Plasma Science, 2012, 40, 1134-1141.	1.3	15
45	Optical and Electrical Diagnostics of Cold Ar Atmospheric Pressure Plasma Jet Generated With a Simple DBD Configuration. IEEE Transactions on Plasma Science, 2011, 39, 1842-1848.	1.3	44
46	Study on the Self-Organized Pattern in an Atmospheric Pressure Dielectric Barrier Discharge Plasma Jet. IEEE Transactions on Plasma Science, 2010, 38, 1061-1065.	1.3	16
47	Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes. Journal of Applied Physics, 2010, 107, .	2.5	106
48	Characteristics of nanosecond pulse needle-to-plane discharges at high pressure: a particle-in-cell Monte Carlo collision simulation. Journal of Applied Physics, 2009, 105, 043305.	2.5	30
49	Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases. Physics of Plasmas, 2008, 15, .	1.9	17
50	A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure. Applied Physics Letters, 2008, 93, .	3.3	102
51	A study of cross-gas-flow to stabilize an atmospheric pressure glow plasma in a multi-pin-to-multi-cupped-plane negative corona discharge. Journal of Electrostatics, 2006, 64, 23-28.	1.9	18
52	Uniform glowlike plasma source assisted by preionization of spark in ambient air at atmospheric pressure. Applied Physics Letters, 2006, 89, 131503.	3.3	37
53	Stable and diffuse atmospheric pressure glow plasma in a multipoint-to-plane configuration in air. IEEE Transactions on Plasma Science, 2005, 33, 210-211.	1.3	8
54	Thick TiN films prepared by vacuum arc deposition and high energetic nitrogen ion beam dynamic mixing implantation. Vacuum, 2003, 72, 41-46.	3.5	6