
Juan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7955322/publications.pdf Version: 2024-02-01

LIAN LI

#	Article	IF	CITATIONS
1	Line defects in plasmatic hollow copper ball boost excellent photocatalytic reaction with pure water under ultra-low CO2 concentration. Journal of Colloid and Interface Science, 2021, 603, 530-538.	9.4	7
2	Rat 90-day oral toxicity study of a novel coccidiostat – Ethanamizuril. Regulatory Toxicology and Pharmacology, 2020, 111, 104550.	2.7	5
3	Tizoxanide induces autophagy by inhibiting PI3K/Akt/mTOR pathway in RAW264.7 macrophage cells. Archives of Pharmacal Research, 2020, 43, 257-270.	6.3	15
4	Influence of 3-Hydroxyflavone on Colloidal Stability and Internationalization of Ag Nanomaterials Into THP-1 Macrophages. Dose-Response, 2019, 17, 155932581986571.	1.6	4
5	Carbon-supported Pd-Co nanocatalyst as highly active anodic electrocatalyst for direct borohydride/hydrogen peroxide fuel cells. Journal of Solid State Electrochemistry, 2019, 23, 1739-1748.	2.5	9
6	Tizoxanide Inhibits Inflammation in LPS-Activated RAW264.7 Macrophages via the Suppression of NF-κB and MAPK Activation. Inflammation, 2019, 42, 1336-1349.	3.8	35
7	The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: The influence of diameters of MWCNTs. Food and Chemical Toxicology, 2019, 126, 169-177.	3.6	55
8	Palmitate enhanced the cytotoxicity of ZnO nanomaterials possibly by promoting endoplasmic reticulum stress. Journal of Applied Toxicology, 2019, 39, 798-806.	2.8	12
9	Cytotoxicity and ER stress–apoptosis gene expression in ZnO nanoparticle exposed THP-1 macrophages: influence of pre-incubation with BSA or palmitic acids complexed to BSA. RSC Advances, 2018, 8, 15380-15388.	3.6	14
10	Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA. Toxicology Mechanisms and Methods, 2018, 28, 520-528.	2.7	7
11	Lipid accumulation in multi-walled carbon nanotube-exposed HepG2 cells: Possible role of lipophagy pathway. Food and Chemical Toxicology, 2018, 121, 65-71.	3.6	21
12	The use of human umbilical vein endothelial cells (HUVECs) as an <i>in vitro</i> model to assess the toxicity of nanoparticles to endothelium: a review. Journal of Applied Toxicology, 2017, 37, 1359-1369.	2.8	209
13	Evaluation of inÂvitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chemico-Biological Interactions, 2017, 263, 46-54.	4.0	26
14	The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO ₂ nanoparticles to human endothelial cells. Toxicology Mechanisms and Methods, 2017, 27, 191-200.	2.7	43
15	The presence of palmitate affected the colloidal stability of ZnO NPs but not the toxicity to Caco-2 cells. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	14
16	The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chemico-Biological Interactions, 2017, 278, 40-47.	4.0	41
17	Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). Environmental Toxicology and Pharmacology, 2017, 56, 233-240.	4.0	32
18	Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. Journal of Applied Toxicology, 2017, 37, 895-901.	2.8	53

Juan Li

#	Article	IF	CITATIONS
19	Thermoresponsive Polymers with Lower Critical Solution Temperature―or Upper Critical Solution Temperatureâ€Type Phase Behaviour Do Not Induce Toxicity to Human Endothelial Cells. Basic and Clinical Pharmacology and Toxicology, 2017, 120, 79-85.	2.5	30
20	Foam cell formation by particulate matter (PM) exposure: a review. Inhalation Toxicology, 2016, 28, 583-590.	1.6	46
21	Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review. Environmental Toxicology and Pharmacology, 2016, 46, 206-210.	4.0	83