Maciej RÃ³wniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7955100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolutionary trajectories of the individual amygdala nuclei in the common shrew, guinea pig, rabbit, fox and pig: A consequence of embryological fate and mosaicâ€ŀike evolution. Journal of Anatomy, 2022, 240, 489-502.	1.5	5
2	Expression of Calbindin, a Marker of Gamma-Aminobutyric Acid Neurons, Is Reduced in the Amygdala of Oestrogen Receptor β-Deficient Female Mice. Journal of Clinical Medicine, 2022, 11, 1760.	2.4	5
3	The amygdala of the common shrew, guinea pig, rabbit, fox and pig: five flavours of the mammalian amygdala as a consequence of cladeâ€specific mosaicâ€like evolution. Journal of Anatomy, 2020, 236, 891-905.	1.5	7
4	The cytokine alterations/abnormalities and oxidative damage in the pancreas during hypertension development. Pflugers Archiv European Journal of Physiology, 2019, 471, 1331-1340.	2.8	5
5	ADHD pathogenesis in the immune, endocrine and nervous systems of juvenile and maturating SHR and WKY rats. Psychopharmacology, 2019, 236, 2937-2958.	3.1	37
6	Ontogeny of calcium-binding proteins in the cingulate cortex of the guinea pig: The same onset but different developmental patterns. Annals of Anatomy, 2019, 222, 103-113.	1.9	0
7	The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones. Brain Structure and Function, 2017, 222, 3775-3793.	2.3	9
8	Parvalbumin, but not calretinin, neurons express high levels of α1-containing GABAA receptors, α7-containing nicotinic acetylcholine receptors and D2-dopamine receptors in the basolateral amygdala of the rat. Journal of Chemical Neuroanatomy, 2017, 86, 41-51.	2.1	12
9	Zinc Transporter 3 (ZnT3) in the Enteric Nervous System of the Porcine lleum in Physiological Conditions and during Experimental Inflammation. International Journal of Molecular Sciences, 2017, 18, 338.	4.1	6
10	Cocaine- and amphetamine-regulated transcript and calcium binding proteins immunoreactivity in the subicular complex of the guinea pig. Annals of Anatomy, 2016, 204, 51-62.	1.9	7
11	Tyrosine hydroxylase-immunoreactivity and its relations with gonadotropin-releasing hormone and neuropeptide Y in the preoptic area of the guinea pig. Journal of Chemical Neuroanatomy, 2016, 78, 131-139.	2.1	2
12	The densities of calbindin and parvalbumin, but not calretinin neurons, are sexually dimorphic in the amygdala of the guinea pig. Brain Research, 2015, 1604, 84-97.	2.2	19
13	Colocalization pattern of calbindin and cocaine- and amphetamine-regulated transcript in the mammillary body–anterior thalamic nuclei axis of the guinea pig. Neuroscience, 2014, 260, 98-105.	2.3	12
14	Axotomy-Induced Changes in the Chemical Coding Pattern of Colon Projecting Calbindin-Positive Neurons in the Inferior Mesenteric Ganglia of the Pig. Journal of Molecular Neuroscience, 2013, 51, 99-108.	2.3	25
15	The amygdala in the guinea pig is sexually dimorphic—A morphometric study. Brain Research, 2013, 1524, 44-53.	2.2	12
16	Morphometric Comparative Study of the Striatum and Globus Pallidus of the Common Shrew, Bank Vole, Rabbit, and Fox. Bulletin of the Veterinary Institute in Pulawy = Biuletyn Instytutu Weterynarii W Pulawach, 2012, 56, 411-414.	0.4	3
17	Distribution of the Cocaine and Amphetamine - Regulated Transcript (Cart) and Calcium Binding Proteins Immunoreactivity in the Preoptic Area of the Ram. Bulletin of the Veterinary Institute in Pulawy = Biuletyn Instytutu Weterynarii W Pulawach, 2012, 56, 355-360.	0.4	6
18	A Morphometric Analysis of the Geniculate Bodies in Selected Mammalian Species. Bulletin of the Veterinary Institute in Pulawy = Biuletyn Instytutu Weterynarii W Pulawach, 2012, 56, 205-210.	0.4	1

Maciej Równiak

#	Article	IF	CITATIONS
19	Chemical coding of zinc-enriched neurons in the intramural ganglia of the porcine jejunum. Cell and Tissue Research, 2012, 350, 215-223.	2.9	14
20	Proliferative Enteropathy (PE)—Induced Changes in the Calbindin-Immunoreactive (CB-IR) Neurons of Inferior Mesenteric Ganglion Supplying the Descending Colon in the Pig. Journal of Molecular Neuroscience, 2012, 48, 757-765.	2.3	17
21	Neurochemical Characterization of Zinc Transporter 3-Like Immunoreactive (ZnT3+) Neurons in the Intramural Ganglia of the Porcine Duodenum. Journal of Molecular Neuroscience, 2012, 48, 766-776.	2.3	12
22	Inflammation-Induced Changes in the Chemical Coding Pattern of Colon-Projecting Neurons in the Inferior Mesenteric Ganglia of the Pig. Journal of Molecular Neuroscience, 2012, 46, 450-458.	2.3	11
23	Distribution and chemical coding pattern of the cocaine- and amphetamine-regulated transcript (CART) immunoreactivity in the preoptic area of the pig. Folia Histochemica Et Cytobiologica, 2012, 49, 604-614.	1.5	13
24	Distribution and chemical coding pattern of somatostatin immunoreactivity in the dorsal striatum of the guinea pig. Folia Histochemica Et Cytobiologica, 2012, 49, 690-699.	1.5	3
25	The Cocaine―and Amphetamineâ€regulated Transcript (CART) Immunoreactivity in the Amygdala of the Pig. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2010, 39, 385-397.	0.7	7
26	Somatostatin-like immunoreactivity in the amygdala of the pig Folia Histochemica Et Cytobiologica, 2008, 46, 229-38.	1.5	9
27	A morphometric study of the amygdala in the guinea pig. Folia Morphologica, 2005, 64, 151-60.	0.8	1
28	A morphometric study of the amygdala in the common shrew. Folia Morphologica, 2004, 63, 387-96.	0.8	1
29	A comparative study of the mammalian amygdala: a Golgi study of the basolateral amygdala. Folia Morphologica, 2003, 62, 331-9	0.8	3