
Michal Bockowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7955009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of beryllium diffusion in HVPE-GaN grown in [11–20] and [10-10] crystallographic directions. Materials Science in Semiconductor Processing, 2022, 139, 106332.	1.9	3
2	The effect of annealing on photoluminescence from defects in ammonothermal GaN. Journal of Applied Physics, 2022, 131, .	1.1	12
3	Thermal annealing of GaN implanted with Be. Journal of Applied Physics, 2022, 131, .	1.1	7
4	Carbon and Manganese in Semi-Insulating Bulk GaN Crystals. Materials, 2022, 15, 2379.	1.3	9
5	Recent Progress in Crystal Growth of Bulk GaN. Acta Physica Polonica A, 2022, 141, 167-174.	0.2	2
6	Electrical transport properties of highly doped N-type GaN materials. Semiconductor Science and Technology, 2022, 37, 055012.	1.0	6
7	On Stress-Induced Polarization Effect in Ammonothermally Grown GaN Crystals. Crystals, 2022, 12, 554.	1.0	4
8	Atomic-scale investigation of implanted Mg in GaN through ultra-high-pressure annealing. Journal of Applied Physics, 2022, 131, .	1.1	8
9	Effect of Ultraâ€Highâ€Pressure Annealing on Defect Reactions in Ionâ€Implanted GaN Studied by Positron Annihilation. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	7
10	Fundamental Studies on Crystallization and Reaching the Equilibrium Shape in Basic Ammonothermal Method: Growth on a Native Lenticular Seed. Materials, 2022, 15, 4621.	1.3	1
11	Volume relaxation in a borosilicate glass hot compressed by three different methods. Journal of the American Ceramic Society, 2021, 104, 816-823.	1.9	2
12	Structural densification of lithium phosphoaluminoborate glasses. Journal of the American Ceramic Society, 2021, 104, 1345-1359.	1.9	7
13	High Mg activation in implanted GaN by high temperature and ultrahigh pressure annealing. Applied Physics Letters, 2021, 118, .	1.5	28
14	Suppressing the lateral growth during HVPE-GaN crystallization in the c-direction. Journal of Crystal Growth, 2021, 556, 125986.	0.7	3
15	Mg-implanted bevel edge termination structure for GaN power device applications. Applied Physics Letters, 2021, 118, .	1.5	20
16	X-ray photoelectron spectroscopy study on effects of ultra-high-pressure annealing on surface of Mg-ion-implanted GaN. Japanese Journal of Applied Physics, 2021, 60, 036503.	0.8	4
17	Defect-related photoluminescence from ammono GaN. Journal of Applied Physics, 2021, 129, 095703.	1.1	8
18	lsochronal annealing study of Mg-implanted p-type GaN activated by ultra-high-pressure annealing. Applied Physics Express, 2021, 14, 056501.	1.1	14

#	Article	IF	CITATIONS
19	Bond Switching in Densified Oxide Glass Enables Record-High Fracture Toughness. ACS Applied Materials & Interfaces, 2021, 13, 17753-17765.	4.0	31
20	Thermal conductivity of densified borosilicate glasses. Journal of Non-Crystalline Solids, 2021, 557, 120644.	1.5	9
21	Indentation Response of Calcium Aluminoborosilicate Glasses Subjected to Humid Aging and Hot Compression. Materials, 2021, 14, 3450.	1.3	1
22	Design and demonstration of nearly-ideal edge termination for GaN p–n junction using Mg-implanted field limiting rings. Applied Physics Express, 2021, 14, 074002.	1.1	19
23	Carbon complexes in highly C-doped GaN. Physical Review B, 2021, 104, .	1.1	18
24	Structural Analysis of Low Defect Ammonothermally Grown GaN Wafers by Borrmann Effect X-ray Topography. Materials, 2021, 14, 5472.	1.3	17
25	Effects of the sequential implantation of Mg and N ions into GaN for p-type doping. Applied Physics Express, 2021, 14, 111001.	1.1	12
26	Enhanced activation of Mg ion-implanted GaN at decreasing annealing temperature by prolonging duration. Applied Physics Express, 2021, 14, 011005.	1.1	17
27	Effect of annealing time and pressure on electrical activation and surface morphology of Mg-implanted GaN annealed at 1300 °C in ultra-high-pressure nitrogen ambient. Applied Physics Express, 2021, 14, 121004.	1.1	17
28	Vibrational disorder and densification-induced homogenization of local elasticity in silicate glasses. Scientific Reports, 2021, 11, 24454.	1.6	3
29	Composition and pressure effects on the structure, elastic properties and hardness of aluminoborosilicate glass. Journal of Non-Crystalline Solids, 2020, 530, 119797.	1.5	30
30	A Deep Carbonâ€Related Acceptor Identified through Photoâ€Induced Electron Paramagnetic Resonance. Physica Status Solidi (B): Basic Research, 2020, 257, 1900593.	0.7	1
31	Study of Dislocations in Homoepitaxially and Heteroepitaxially Grown AlN Layers. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000465.	0.8	3
32	Synchrotron X-ray topography characterization of high quality ammonothermal-grown gallium nitride substrates. Journal of Crystal Growth, 2020, 551, 125903.	0.7	17
33	Self-compensation of carbon in HVPE-GaN:C. Applied Physics Letters, 2020, 117, .	1.5	21
34	Recent progress in basic ammonothermal GaN crystal growth. Journal of Crystal Growth, 2020, 547, 125804.	0.7	33
35	Redistribution of Mg and H atoms in Mg-implanted GaN through ultra-high-pressure annealing. Applied Physics Express, 2020, 13, 086501.	1.1	30
36	Growth of bulk GaN crystals. Journal of Applied Physics, 2020, 128, .	1.1	76

#	Article	IF	CITATIONS
37	Atomic structure of hot compressed borosilicate glasses. Journal of the American Ceramic Society, 2020, 103, 6215-6225.	1.9	13
38	Effects of ultra-high-pressure annealing on characteristics of vacancies in Mg-implanted GaN studied using a monoenergetic positron beam. Scientific Reports, 2020, 10, 17349.	1.6	22
39	High Pressure Processing of Ion Implanted GaN. Electronics (Switzerland), 2020, 9, 1380.	1.8	36
40	Progress on and challenges of p-type formation for GaN power devices. Journal of Applied Physics, 2020, 128, .	1.1	54
41	Impacts of high temperature annealing above 1400° C under N2 overpressure to activate acceptors in Mg-implanted GaN. , 2020, , .		6
42	Impact of impurity-based phonon resonant scattering on thermal conductivity of single crystalline GaN. Applied Physics Letters, 2020, 117, 082101.	1.5	7
43	GaN Single Crystalline Substrates by Ammonothermal and HVPE Methods for Electronic Devices. Electronics (Switzerland), 2020, 9, 1342.	1.8	18
44	Defect evolution in Mg ions implanted GaN upon high temperature and ultrahigh N2 partial pressure annealing: Transmission electron microscopy analysis. Journal of Applied Physics, 2020, 127, .	1.1	38
45	Acceptor state anchoring in gallium nitride. Applied Physics Letters, 2020, 116, .	1.5	2
46	Investigation of diffusion mechanism of beryllium in GaN. Physica B: Condensed Matter, 2020, 594, 412316.	1.3	8
47	Strain Recovery and Defect Characterization in Mgâ€Implanted Homoepitaxial GaN on Highâ€Quality GaN Substrates. Physica Status Solidi (B): Basic Research, 2020, 257, 1900705.	0.7	14
48	Complex Geometric Structure of a Simple Solid-Liquid Interface: GaN(0001)-Ga. Physical Review Letters, 2020, 124, 086101.	2.9	6
49	Lattice bow in thick, homoepitaxial GaN layers for vertical power devices. Journal of Crystal Growth, 2020, 539, 125643.	0.7	2
50	Achieving ultrahigh crack resistance in glass through humid aging. Physical Review Materials, 2020, 4,	0.9	9
51	Revisiting the Dependence of Poisson's Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glasses. Materials, 2019, 12, 2439.	1.3	30
52	Synchrotron radiation X-ray topography and defect selective etching analysis of threading dislocations in halide vapor phase epitaxy GaN crystal grown on ammonothermal seed. Japanese Journal of Applied Physics, 2019, 58, SCCB19.	0.8	4
53	Iron and manganese as dopants used in the crystallization of highly resistive HVPE-GaN on native seeds. Japanese Journal of Applied Physics, 2019, 58, SC1047.	0.8	23
54	Homoepitaxial growth by halide vapor phase epitaxy of semi-polar GaN on ammonothermal seeds. Japanese Journal of Applied Physics, 2019, 58, SC1030.	0.8	8

#	Article	IF	CITATIONS
55	Electric-field-induced simultaneous diffusion of Mg and H in Mg-doped GaN prepared using ultra-high-pressure annealing. Applied Physics Express, 2019, 12, 111005.	1.1	24
56	V-shaped dislocations in a GaN epitaxial layer on GaN substrate. AIP Advances, 2019, 9, .	0.6	8
57	Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing. Applied Physics Letters, 2019, 115, .	1.5	110
58	Growth and optical properties of ZnO/Zn _{1â^²x} Mg _x O quantum wells on ZnO microrods. Nanoscale, 2019, 11, 2275-2281.	2.8	8
59	Micro-Raman studies of strain in bulk GaN crystals grown by hydride vapor phase epitaxy on ammonothermal GaN seeds. Japanese Journal of Applied Physics, 2019, 58, SCCB32.	0.8	18
60	Electrical properties of vertical GaN Schottky diodes on Ammono-GaN substrate. Materials Science in Semiconductor Processing, 2019, 96, 132-136.	1.9	14
61	Impact of gas composition on thermal conductivity of glass foams prepared via high-pressure sintering. Journal of Non-Crystalline Solids: X, 2019, 1, 100014.	0.5	5
62	Permanent Densification of Calcium Aluminophosphate Glasses. Frontiers in Materials, 2019, 6, .	1.2	10
63	Photo-EPR study of compensated defects in Be-doped GaN substrates. Journal of Applied Physics, 2019, 125, .	1.1	6
64	Incorporation of Carbon in Free-Standing HVPE-Grown GaN Substrates. Journal of Electronic Materials, 2019, 48, 2226-2232.	1.0	17
65	Luminescence behaviour of Eu3+ in hot-compressed silicate glasses. Journal of Non-Crystalline Solids: X, 2019, 4, 100041.	0.5	3
66	Multifold pressure-induced increase of electric conductivity in LiFe0.75V0.10PO4 glass. Scientific Reports, 2019, 9, 16607.	1.6	8
67	Study of spectral and recombination characteristics of HVPE GaN grown on ammono substrates. Materials Science in Semiconductor Processing, 2019, 91, 341-355.	1.9	8
68	Foam glass obtained through highâ€pressure sintering. Journal of the American Ceramic Society, 2018, 101, 3917-3923.	1.9	20
69	Optical investigations of europium ion implanted in nitride-based diode structures. Surface and Coatings Technology, 2018, 355, 40-44.	2.2	9
70	A compensating point defect in carbon-doped GaN substrates studied with electron paramagnetic resonance spectroscopy. Journal of Applied Physics, 2018, 123, .	1.1	8
71	Pressure-induced structural changes in titanophosphate glasses studied by neutron and X-ray total scattering analyses. Journal of Non-Crystalline Solids, 2018, 483, 50-59.	1.5	13
72	First Step in Exploration of Fe–Ga–N System for Efficient Crystallization of GaN at High N ₂ Pressure. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700897.	0.8	2

#	Article	IF	CITATIONS
73	Eu–Mg defects and donor–acceptor pairs in GaN: photodissociation and the excitation transfer problem. Journal Physics D: Applied Physics, 2018, 51, 065106.	1.3	5
74	Electrical characterization of HVPE GaN containing different concentrations of carbon dopants. Semiconductor Science and Technology, 2018, 33, 125024.	1.0	7
75	GaN Power Devices – Current Status and Future Directions. Electrochemical Society Interface, 2018, 27, 43-47.	0.3	12
76	Hysteretic Photochromic Switching (HPS) in Doubly Doped GaN(Mg):Eu—A Summary of Recent Results. Materials, 2018, 11, 1800.	1.3	5
77	Charge transfer process for carbon-related center in semi-insulating carbon-doped GaN. Journal of Applied Physics, 2018, 124, .	1.1	16
78	Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. Journal of Applied Physics, 2018, 124, .	1.1	25
79	Deformation and cracking behavior of La2O3-doped oxide glasses with high Poisson's ratio. Journal of Non-Crystalline Solids, 2018, 494, 86-93.	1.5	9
80	Structural Compromise between High Hardness and Crack Resistance in Aluminoborate Glasses. Journal of Physical Chemistry B, 2018, 122, 6287-6295.	1.2	32
81	Doping in bulk HVPE-GaN grown on native seeds – highly conductive and semi-insulating crystals. Journal of Crystal Growth, 2018, 499, 1-7.	0.7	28
82	Eu-Doped AlGaN/GaN Superlattice-Based Diode Structure for Red Lighting: Excitation Mechanisms and Active Sites. ACS Applied Nano Materials, 2018, 1, 3845-3858.	2.4	14
83	The influence of the substrate misorientation on the structural quality of GaN layers grown by HVPE. Journal of Crystal Growth, 2018, 498, 346-351.	0.7	2
84	Extremely Slow Decay of Yellow Luminescence in Beâ€Đoped GaN and Its Identification. Physica Status Solidi (B): Basic Research, 2018, 255, 1800126.	0.7	7
85	Homoepitaxial HVPE GaN: A potential substrate for high performance devices. Journal of Crystal Growth, 2018, 500, 104-110.	0.7	6
86	Basic ammonothermal growth of Gallium Nitride – State of the art, challenges, perspectives. Progress in Crystal Growth and Characterization of Materials, 2018, 64, 63-74.	1.8	82
87	Combining high hardness and crack resistance in mixed network glasses through high-temperature densification. Physical Review Materials, 2018, 2, .	0.9	8
88	Ammonothermal GaN substrates for microwave electronics and energoelectronics. , 2018, , .		1
89	Vertical GaN Schottky Diodes Grown on Highly Conductive Ammono-GaN Substrate. Acta Physica Polonica A, 2018, 134, 969-972.	0.2	2
90	Structural origin of high crack resistance in sodium aluminoborate glasses. Journal of Non-Crystalline Solids, 2017, 460, 54-65.	1.5	69

#	Article	IF	CITATIONS
91	Photoelastic response of permanently densified oxide glasses. Optical Materials, 2017, 67, 155-161.	1.7	5
92	Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies. Journal Physics D: Applied Physics, 2017, 50, 22LT03.	1.3	17
93	Pressure-driven structural depolymerization of zinc phosphate glass. Journal of Non-Crystalline Solids, 2017, 469, 31-38.	1.5	12
94	Crystallization of semi-insulating HVPE-GaN with solid iron as a source of dopants. Journal of Crystal Growth, 2017, 475, 121-126.	0.7	13
95	Discovery of Ultra-Crack-Resistant Oxide Glasses with Adaptive Networks. Chemistry of Materials, 2017, 29, 5865-5876.	3.2	113
96	Hysteretic photochromic switching of Eu-Mg defects in GaN links the shallow transient and deep ground states of the Mg acceptor. Scientific Reports, 2017, 7, 41982.	1.6	11
97	Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds. Applied Physics Express, 2017, 10, 011003.	1.1	59
98	DFT modeling of carbon incorporation in GaN(0001) and GaN(0001Â ⁻) metalorganic vapor phase epitaxy. Applied Physics Letters, 2017, 111, .	1.5	19
99	Crystal growth of HVPE-GaN doped with germanium. Journal of Crystal Growth, 2017, 480, 102-107.	0.7	26
100	Dissolution Kinetics of Hot Compressed Oxide Glasses. Journal of Physical Chemistry B, 2017, 121, 9063-9072.	1.2	33
101	Accessing Forbidden Glass Regimes through High-Pressure Sub-Tg Annealing. Scientific Reports, 2017, 7, 46631.	1.6	10
102	Amphoteric Be in GaN: Experimental Evidence for Switching between Substitutional and Interstitial Lattice Sites. Physical Review Letters, 2017, 119, 196404.	2.9	44
103	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:msub> < mml:mrow> < mml:mi> Al < mml: mathvariant="normal"> O < mml:mrow> < mml:mn> 3 < /mml:mn> mathvariant="normal"> B < mml:mrow> < mml:mn> 2 <.	mn>2 <td>ml;mn>itext>â^`</td>	ml;mn>itext>â^`
104	Physical Review Applied, 2017, 7, . (Invited) Growth and Characterization of Bulk HVPE-GaN – Pathway to Highly Conductive and Semi-Insulating GaN Substrates. ECS Transactions, 2017, 80, 991-1003.	0.3	3
105	Luminescence of Eu3+ in GaN(Mg, Eu): Transitions from the 5D1 level. Applied Physics Letters, 2017, 111, .	1.5	12
106	Modifier field strength effects on densification behavior and mechanical properties of alkali aluminoborate glasses. Physical Review Materials, 2017, 1, .	0.9	33
107	Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass. Frontiers in Materials, 2016, 3, .	1.2	20
108	A model for Be-related photo-absorption in compensated GaN:Be substrates. Journal of Applied Physics, 2016, 120, .	1.1	15

#	Article	IF	CITATIONS
109	AlGaInN laser diode bar and array technology for high-power and individual addressable applications. Proceedings of SPIE, 2016, , .	0.8	Ο
110	Preparation of a smooth GaN–Gallium solid–liquid interface. Journal of Crystal Growth, 2016, 448, 70-75.	0.7	7
111	HVPE-GaN growth on GaN-based advanced substrates by Smart CutTM. , 2016, , .		Ο
112	AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications. , 2016, , .		0
113	Structure and mechanical properties of compressed sodium aluminosilicate glasses: Role of non-bridging oxygens. Journal of Non-Crystalline Solids, 2016, 441, 49-57.	1.5	89
114	Advances in AlGaInN laser diode technology for defence and sensing applications. , 2016, , .		0
115	HVPE-GaN growth on GaN-based Advanced Substrates by Smart Cutâ"¢. Journal of Crystal Growth, 2016, 456, 73-79.	0.7	9
116	Pressure-induced structural transformations in phosphorus oxynitride glasses. Journal of Non-Crystalline Solids, 2016, 452, 153-160.	1.5	7
117	Homoepitaxial growth of HVPE-GaN doped with Si. Journal of Crystal Growth, 2016, 456, 91-96.	0.7	29
118	Growth of HVPE-GaN on native seeds – numerical simulation based on experimental results. Journal of Crystal Growth, 2016, 456, 86-90.	0.7	9
119	Volume and structural relaxation in compressed sodium borate glass. Physical Chemistry Chemical Physics, 2016, 18, 29879-29891.	1.3	21
120	Influence of crystallization front direction on the Mg-related impurity centers incorporation in bulk GaN:Mg grown by HNPS method. Optical Materials, 2016, 58, 491-496.	1.7	1
121	Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds. Semiconductor Science and Technology, 2016, 31, 093002.	1.0	116
122	Incorporation of pervasive impurities on HVPE GaN growth directions. Journal of Crystal Growth, 2016, 456, 101-107.	0.7	4
123	HVPE GaN wafers with improved crystalline and electrical properties. Journal of Crystal Growth, 2016, 456, 113-120.	0.7	16
124	Influence of edge-grown HVPE GaN on the structural quality of c-plane oriented HVPE-GaN grown on ammonothermal GaN substrates. Journal of Crystal Growth, 2016, 456, 80-85.	0.7	18
125	Crucial effect of angular flexibility on the fracture toughness and nano-ductility of aluminosilicate glasses. Journal of Non-Crystalline Solids, 2016, 454, 46-51.	1.5	20
126	Advances in AlGaInN laser diode technology for defence, security and sensing applications. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
127	Crystalfield symmetries of luminescent Eu3+ centers in GaN: The importance of the 5D to 7F1 transition. Applied Physics Letters, 2016, 108, .	1.5	28
128	Sensitivity of Fermi level position at Ga-polar, N-polar, and nonpolar m-plane GaN surfaces to vacuum and air ambient. Japanese Journal of Applied Physics, 2016, 55, 05FA08.	0.8	7
129	Free-space and underwater GHz data transmission using AlGaInN laser diode technology. Proceedings of SPIE, 2016, , .	0.8	4
130	Spectroscopic study of radiative intra-configurational 4f→4f transitions in Yb3+-doped materials using high hydrostatic pressure. Journal of Luminescence, 2016, 169, 507-515.	1.5	7
131	Universal behavior of changes in elastic moduli of hot compressed oxide glasses. Chemical Physics Letters, 2016, 651, 88-91.	1.2	24
132	Study of damage formation and annealing of implanted III-nitride semiconductors for optoelectronic devices. Nuclear Instruments & Methods in Physics Research B, 2016, 379, 251-254.	0.6	17
133	AlGaInN laser diode technology for systems applications. , 2016, , .		2
134	High Temperature Stability of Electrical and Optical Properties of Bulk GaN:Mg Grown by HNPS Method in Different Crystallographic Directions. Acta Physica Polonica A, 2016, 129, A-126-A-128.	0.2	2
135	Luminescence studies on green emitting InGaN/GaN MQWs implanted with nitrogen. Scientific Reports, 2015, 5, 9703.	1.6	19
136	Photoluminescence studies of a perceived white light emission from a monolithic InGaN/GaN quantum well structure. Scientific Reports, 2015, 5, 13739.	1.6	19
137	Unique effects of thermal and pressure histories on glass hardness: Structural and topological origin. Journal of Chemical Physics, 2015, 143, 164505.	1.2	51
138	Indirect excitation of Eu ³⁺ in GaN codoped with Mg and Eu. Journal of Physics: Conference Series, 2015, 619, 012025.	0.3	2
139	Determination of an acceptor level in bulk GaN grown by high nitrogen pressure solution method. Physica Status Solidi (B): Basic Research, 2015, 252, 923-927.	0.7	5
140	Electron paramagnetic resonance studies of bulk Mg-doped GaN grown by high nitrogen pressure solution method. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 338-340.	0.8	0
141	(Invited) Synchrotron White-Beam X-Ray Topography Analysis of the Defect Structure of HVPE-GaN Substrates. ECS Transactions, 2015, 66, 93-106.	0.3	3
142	Real-time observation system development for high-temperature liquid/solid interfaces and its application to solid-source solution growth of AlN. Applied Physics Express, 2015, 8, 065601.	1.1	3
143	Examination of defects and the seed's critical thickness in HVPEâ€GaN growth on ammonothermal GaN seed. Physica Status Solidi (B): Basic Research, 2015, 252, 1172-1179.	0.7	26
144	Ammonothermal growth of GaN crystals on HVPE-GaN seeds prepared with the use of ammonothermal substrates. Journal of Crystal Growth, 2015, 427, 1-6.	0.7	16

#	Article	IF	CITATIONS
145	Synchrotron White-Beam X-Ray Topography Analysis of the Defect Structure of HVPE-GaN Substrates. ECS Journal of Solid State Science and Technology, 2015, 4, P324-P330.	0.9	23
146	Linear piezoelectricity material constants for ammonothermal gallium nitride measured by bulk acoustic waves. Semiconductor Science and Technology, 2015, 30, 035008.	1.0	15
147	Advances in single mode and high power AlGaInN laser diode technology for systems applications. , 2015, , .		2
148	Homoepitaxial HVPE GaN growth on non- and semi-polar seeds. Proceedings of SPIE, 2015, , .	0.8	4
149	AlGaInN laser diode technology for free-space telecom applications. Proceedings of SPIE, 2015, , .	0.8	1
150	Indentation deformation mechanism of isostatically compressed mixed alkali aluminosilicate glasses. Journal of Non-Crystalline Solids, 2015, 426, 175-183.	1.5	53
151	Growth of High Crystalline Quality HVPE-GaN Crystals with Controlled Electrical Properties. Crystal Growth and Design, 2015, 15, 4837-4842.	1.4	24
152	Temperature-dependent densification of sodium borosilicate glass. RSC Advances, 2015, 5, 78845-78851.	1.7	23
153	High-Pressure, High-Temperature Solution Growth and Ammonothermal Synthesis of Gallium Nitride Crystals. , 2015, , 577-619.		4
154	GaN:Pr ³⁺ nanostructures for red solid state light emission. RSC Advances, 2014, 4, 62869-62877.	1.7	5
155	Bulk GaN and its application as substrates in building quantum nanostructures for some electronic and optoelectronic devices. Proceedings of SPIE, 2014, , .	0.8	1
156	Preparation of free-standing GaN substrates from GaN layers crystallized by hydride vapor phase epitaxy on ammonothermal GaN seeds. Japanese Journal of Applied Physics, 2014, 53, 05FA04.	0.8	21
157	High nitrogen pressure solution growth of GaN. Japanese Journal of Applied Physics, 2014, 53, 100203.	0.8	21
158	HVPE-GaN grown on MOCVD-GaN/sapphire template and ammonothermal GaN seeds: Comparison of structural, optical, and electrical properties. Journal of Crystal Growth, 2014, 394, 55-60.	0.7	44
159	Mixed alkaline earth effect in the compressibility of aluminosilicate glasses. Journal of Chemical Physics, 2014, 140, 054511.	1.2	52
160	Europiumâ€doped GaN(Mg): beyond the limits of the lightâ€emitting diode. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 662-665.	0.8	17
161	Examination of growth rate during hydride vapor phase epitaxy of GaN on ammonothermal GaN seeds. Journal of Crystal Growth, 2014, 407, 52-57.	0.7	21
162	Composition-Structure-Property Relations of Compressed Borosilicate Glasses. Physical Review Applied, 2014, 2, .	1.5	47

#	Article	IF	CITATIONS
163	Pressure-Induced Changes in Interdiffusivity and Compressive Stress in Chemically Strengthened Glass. ACS Applied Materials & Interfaces, 2014, 6, 10436-10444.	4.0	22
164	HVPE-GaN growth on misoriented ammonothermal GaN seeds. Journal of Crystal Growth, 2014, 403, 32-37.	0.7	15
165	Structural defects in bulk GaN. Journal of Crystal Growth, 2014, 403, 66-71.	0.7	5
166	Homoepitaxial HVPE-GaN growth on non-polar and semi-polar seeds. Journal of Crystal Growth, 2014, 403, 48-54.	0.7	31
167	Photo-etching of HVPE-grown GaN: Revealing extended non-homogeneities induced by periodic carrier gas exchange. Journal of Crystal Growth, 2014, 403, 77-82.	0.7	8
168	Optical and magnetic resonance studies of Be-doped GaN bulk crystals. Journal of Crystal Growth, 2014, 403, 119-123.	0.7	8
169	Sequential multiple-step europium ion implantation and annealing of GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 253-257.	0.8	9
170	Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy. Applied Physics Letters, 2013, 103, .	1.5	18
171	Role and influence of impurities on GaN crystal grown from liquid solution under high nitrogen pressure in multi-feed-seed configuration. Proceedings of SPIE, 2013, , .	0.8	6
172	Latest developments in AlGaInN laser diode technology. Proceedings of SPIE, 2013, , .	0.8	0
173	Thin AlGaN cladding, blue-violet InGaN laser diode with plasmonic GaN substrate. , 2013, , .		1
174	Advances in AlGaInN laser diode technology for defence applications. Proceedings of SPIE, 2013, , .	0.8	1
175	Advances in AlGaInN laser diode technology for defence applications. , 2013, , .		1
176	Analysis of self-lift-off process during HVPE growth of GaN on MOCVD-GaN/sapphire substrates with photolitographically patterned Ti mask. Journal of Crystal Growth, 2013, 380, 99-105.	0.7	24
177	Step-flow growth mode instability of N-polar GaN under N-excess. Applied Physics Letters, 2013, 103, .	1.5	15
178	GaN doped with beryllium—An effective light converter for white light emitting diodes. Applied Physics Letters, 2013, 103, .	1.5	23
179	Preparation of Free-Standing GaN Substrates from Thick GaN Layers Crystallized by Hydride Vapor Phase Epitaxy on Ammonothermally Grown GaN Seeds. Applied Physics Express, 2013, 6, 075504.	1.1	51
180	HVPE-GaN growth on ammonothermal GaN crystals. Proceedings of SPIE, 2013, , .	0.8	10

#	Article	IF	CITATIONS
181	Surface properties of c-plane GaN grown by plasma-assisted molecular beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	0.6	11
182	Investigation on the origin of luminescence quenching in N-polar (In,Ga)N multiple quantum wells. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	0.6	15
183	Temperature-dependent hysteresis of the emission spectrum of Eu-implanted, Mg-doped HVPE GaN. AIP Conference Proceedings, 2013, , .	0.3	5
184	Superconductivity Study of GaN Highly Doped by Transition Metals. Acta Physica Polonica A, 2013, 124, 877-880.	0.2	0
185	Advances in single mode, high frequency and high power AlGaInN laser diodes. , 2013, , .		0
186	The homoepitaxial challenge: GaN crystals grown at high pressure for laser diodes and laser diode arrays. , 2013, , 18-77.		3
187	Lateral Control of Indium Content and Wavelength of III–Nitride Diode Lasers by Means of GaN Substrate Patterning. Applied Physics Express, 2012, 5, 021001.	1.1	26
188	Nonlinear emission properties of an optically anisotropic GaN-based microcavity. Physical Review B, 2012, 86, .	1.1	5
189	The nature of Cr center in GaN: Magnetic anisotropy of GaN:Cr single crystals. Journal of Applied Physics, 2012, 112, 113914.	1.1	4
190	Characterization of the Nonpolar GaN Substrate Obtained by Multistep Regrowth by Hydride Vapor Phase Epitaxy. Applied Physics Express, 2012, 5, 011001.	1.1	6
191	Multi feed seed (MFS) high pressure crystallization of 1–2in GaN. Journal of Crystal Growth, 2012, 350, 5-10.	0.7	31
192	Growth of GaN:Mg crystals by high nitrogen pressure solution method in multi-feed–seed configuration. Journal of Crystal Growth, 2012, 350, 50-55.	0.7	15
193	Estimation of the recombination coefficients in aged InGaN laser diodes. Proceedings of SPIE, 2012, , .	0.8	0
194	Electronic structure of ytterbium-implanted GaN at ambient and high pressure: experimental and crystal field studies. Journal of Physics Condensed Matter, 2012, 24, 095803.	0.7	1
195	Latest developments in AlGaInN laser diode technology for defence applications. Proceedings of SPIE, 2012, , .	0.8	1
196	High nitrogen pressure solution growth of GaN in multi feedâ€seed configuration. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 453-456.	0.8	6
197	Observation of Magnetic Anisotropy in GaN:Cr Single Crystals. Acta Physica Polonica A, 2012, 122, 1007-1009.	0.2	0
198	Optically pumped 500 nm InGaN green lasers grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2011, 110, .	1.1	44

#	Article	IF	CITATIONS
199	Plasmonic cladding InGaN MQW laser diodes. , 2011, , .		Ο
200	High nitrogen pressure solution (HNPS) growth of GaN on 2 inch free standing GaN substrates. Science China Technological Sciences, 2011, 54, 42-46.	2.0	8
201	High nitrogen pressure solution growth of bulk GaN in "feedâ€seed―configuration. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1507-1510.	0.8	8
202	InGaN miniâ€laser diode arrays with cw output power of 500 mW. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2348-2350.	0.8	3
203	The photoluminescence/excitation (PL/E) spectroscopy of Eu-implanted GaN. Optical Materials, 2011, 33, 1063-1065.	1.7	27
204	Contactless electroreflectance of polar and nonpolar GaN/AlGaN quantum wells. Journal of Applied Physics, 2011, 109, .	1.1	7
205	Tailoring the light-matter coupling in anisotropic microcavities: Redistribution of oscillator strength in strained <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>m</mml:mi></mml:math> -plane GaN/AlGaN quantum wells. Physical Review B, 2011, 84.	1.1	13
206	Secondary ions mass spectroscopy measurements of dopant impurities in highly stressed InGaN laser diodes. Applied Physics Letters, 2011, 98, .	1.5	14
207	Zeeman splittings of the ⁵ D ₀ – ⁷ F ₂ transitions of Eu ³⁺ ions implanted into GaN. Materials Research Society Symposia Proceedings, 2011, 1290, 1.	0.1	6
208	Tilt of InGaN layers on miscut GaN substrates. Physica Status Solidi - Rapid Research Letters, 2010, 4, 142-144.	1.2	12
209	Ca3N2 as a flux for crystallization of GaN. Journal of Crystal Growth, 2010, 312, 2574-2578.	0.7	3
210	The influence of indium on the growth of GaN from solution under high pressure. Journal of Crystal Growth, 2010, 312, 2593-2598.	0.7	4
211	High temperature annealing of Europium implanted AlN. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2907-2910.	0.6	4
212	Interplay of stimulated emission and Auger-like effect in violet and blue InGaN laser diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1835-1837.	0.8	0
213	Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy. Applied Physics Letters, 2010, 97, 111911.	1.5	29
214	Identification of the prime optical center in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mtext>GaN</mml:mtext><mml:mo>:</mml:mo><mml:msup><mml:mrow> Physical Review B, 2010, 81, .</mml:mrow></mml:msup></mml:mrow></mml:math 	<mmi:mte< td=""><td>xt>£u</td></mmi:mte<>	xt>£u
215	Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures. Journal of Applied Physics, 2010, 108, .	1.1	19
216	High Pressure Solution Growth of Gallium Nitride. Springer Series in Materials Science, 2010, , 207-234.	0.4	15

#	Article	IF	CITATIONS
217	Application of a composite plasmonic substrate for the suppression of an electromagnetic mode leakage in InGaN laser diodes. Applied Physics Letters, 2009, 95, .	1.5	36
218	Effect of efficiency "droop―in violet and blue InGaN laser diodes. Applied Physics Letters, 2009, 95, 071108.	1.5	20
219	MAGNETO-LUMINESCENCE OF GADOLINIUM DOPED GALLIUM NITRIDE. International Journal of Modern Physics B, 2009, 23, 2994-2998.	1.0	1
220	InGaN Laser Diode Degradation. Surface and Bulk Processes. Materials Research Society Symposia Proceedings, 2009, 1195, 52.	0.1	2
221	Liquid phase epitaxy of GaN on MOCVD GaN/sapphire and HVPE freeâ€standing substrates under high nitrogen pressure. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1539-1542.	0.8	1
222	GaN crystallization by the high-pressure solution growth method on HVPE bulk seed. Journal of Crystal Growth, 2008, 310, 3924-3933.	0.7	35
223	Secrets of GaN substrates properties for high luminousity of InGaN quantum wells. Proceedings of SPIE, 2008, , .	0.8	1
224	Time-Resolved Studies of Gallium Nitride Doped with Gadolinium. Acta Physica Polonica A, 2008, 114, 1425-1430.	0.2	2
225	LASER DIODES GROWN ON BULK GALLIUM NITRIDE SUBSTRATES. , 2008, , 223-252.		Ο
226	Diluted Magnetic III-V Semiconductors With Mn For Possible Spintronic Applications. AIP Conference Proceedings, 2007, , .	0.3	0
227	Bulk growth of gallium nitride: challenges and difficulties. Crystal Research and Technology, 2007, 42, 1162-1175.	0.6	23
228	Modelling the growth of nitrides in ammoniaâ€rich environment. Crystal Research and Technology, 2007, 42, 1281-1290.	0.6	12
229	Crystallization of low dislocation density GaN by high-pressure solution and HVPE methods. Journal of Crystal Growth, 2007, 300, 17-25.	0.7	29
230	Adsorption and dissolution of nitrogen in lithium—QM DFT investigation. Journal of Crystal Growth, 2007, 304, 299-309.	0.7	0
231	Platelets and needles: Two habits of pressure-grown GaN crystals. Journal of Crystal Growth, 2007, 305, 414-420.	0.7	8
232	High pressure–high temperature seeded growth of GaN on 1 in sapphire/GaN templates: Analysis of convective transport. Journal of Crystal Growth, 2007, 307, 259-267.	0.7	21
233	Platelets and needles: two habits of pressure grown GaN crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2236-2239.	0.8	1
234	Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy. Applied Physics Letters, 2006, 88, 141909.	1.5	30

#	Article	IF	CITATIONS
235	Growth of bulk GaN by HVPE on pressure grown seeds. , 2006, , .		12
236	Growth of GaN on patterned GaN/sapphire substrates with various metallic masks by high pressure solution method. , 2006, , .		3
237	Crystallization of free standing bulk GaN by HVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1453-1456.	0.8	9
238	Growth of GaN on patterned thick HVPE free standing GaN substrates by high pressure solution method. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1487-1490.	0.8	1
239	Mass flow and reaction analysis of the growth of GaN by HVPE. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 131-134.	0.8	2
240	Crystallization of GaN by HVPE on pressure grown seeds. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1654-1657.	0.8	7
241	Dissociation of VGa–ON complexes in HVPE GaN by high pressure and high temperature annealing. Physica Status Solidi (B): Basic Research, 2006, 243, 1436-1440.	0.7	10
242	CFD and reaction computational analysis of the growth of GaN by HVPE method. Journal of Crystal Growth, 2006, 296, 31-42.	0.7	23
243	Thermal stability of in-grown vacancy defects in GaN grown by hydride vapor phase epitaxy. Journal of Applied Physics, 2006, 99, 066105.	1.1	40
244	Photoluminescence and Electron Paramagnetic Resonance Studies of Bulk GaN Doped with Gadolinium. Acta Physica Polonica A, 2006, 110, 243-248.	0.2	14
245	Growth of AlN, GaN and InN from the solution. International Journal of Materials and Product Technology, 2005, 22, 226.	0.1	19
246	Gallium nitride growth on sapphire/GaN templates at high pressure and high temperatures. Journal of Crystal Growth, 2005, 274, 55-64.	0.7	19
247	Control of Mg doping of GaN in RF-plasma molecular beam epitaxy. Journal of Crystal Growth, 2005, 278, 443-448.	0.7	26
248	Growth of GaN on patterned GaN/sapphire substrates by high pressure solution method. Journal of Crystal Growth, 2005, 281, 11-16.	0.7	10
249	Deposition of thick GaN layers by HVPE on the pressure grown GaN substrates. Journal of Crystal Growth, 2005, 281, 38-46.	0.7	66
250	High magnetic field studies of AlGaN/GaN heterostructures grown on bulk GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1355-1359.	0.8	3
251	Microstructure of III-N semiconductors related to their applications in optoelectronics. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1366-1373.	0.8	1
252	Neutral Mn Acceptor in GaN Studied in High Magnetic Fields. AIP Conference Proceedings, 2005, , .	0.3	0

#	Article	IF	CITATIONS
253	Magnetic anisotropy of bulk GaN:Mn single crystals codoped with Mg acceptors. Physical Review B, 2005, 71, .	1.1	35
254	Heat capacity of Î $\pm \hat{a}^{\prime}$ GaN: Isotope effects. Physical Review B, 2005, 72, .	1.1	68
255	High mobility two-dimensional electron gas in AlGaNâ^•GaN heterostructures grown on bulk GaN by plasma assisted molecular beam epitaxy. Applied Physics Letters, 2005, 86, 102106.	1.5	56
256	Photoluminescence Study of Bulk GaN Doped with Beryllium. Acta Physica Polonica A, 2005, 108, 705-710.	0.2	4
257	Low dislocation density, high power InGaN laser diodes. MRS Internet Journal of Nitride Semiconductor Research, 2004, 9, 1.	1.0	9
258	Neutral Mn acceptor in bulk GaN in high magnetic fields. Physical Review B, 2004, 70, .	1.1	54
259	Optical and magnetic properties of Mn in bulk GaN. Physical Review B, 2004, 69, .	1.1	84
260	Growth of bulk GaN on GaN/sapphire templates by a high N2 pressure method. Physica Status Solidi (B): Basic Research, 2004, 241, 2685-2688.	0.7	1
261	Observation of localization effects in InGaN/GaN quantum structures by means of the application of hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2004, 241, 3285-3292.	0.7	6
262	Magnetotransport studies of Ga(Mn,Fe)N bulk crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 198-201.	0.8	3
263	Energy dependence of electron inelastic mean free paths in bulk GaN crystals. Surface Science, 2004, 566-568, 1234-1239.	0.8	21
264	Deposition of bulk GaN from solution in gallium under high N2 pressure on silicon carbide and sapphire substrates. Journal of Crystal Growth, 2004, 270, 409-419.	0.7	25
265	Thick GaN layers grown by hydride vapor-phase epitaxy: hetero- versus homo-epitaxy. Journal of Crystal Growth, 2003, 255, 241-249.	0.7	24
266	Device advantage of the dislocation-free pressure grown GaN substrates. Materials Science in Semiconductor Processing, 2003, 6, 347-350.	1.9	2
267	Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Communications, 2003, 128, 69-73.	0.9	152
268	Thermal conductivity of bulk GaN single crystals. Physica B: Condensed Matter, 2003, 329-333, 1531-1532.	1.3	8
269	Bulk GaN crystals grown at high pressure as substrates for blue-laser technology. Physica Status Solidi A, 2003, 200, 9-12.	1.7	16
270	Thermal conductivity of GaN crystals grown by high pressure method. Physica Status Solidi (B): Basic Research, 2003, 240, 447-450.	0.7	35

#	Article	IF	CITATIONS
271	S–d exchange interaction in GaN:Mn studied by electron paramagnetic resonance. Applied Physics Letters, 2003, 83, 5428-5430.	1.5	13
272	Mn Impurity in GaN Studied by Electron Paramagnetic Resonance. Acta Physica Polonica A, 2003, 103, 595-600.	0.2	0
273	High-pressure direct synthesis of aluminium nitride. Journal of Physics Condensed Matter, 2002, 14, 11237-11242.	0.7	7
274	Blue-Laser Structures Grown on Bulk GaN Crystals. Physica Status Solidi A, 2002, 192, 320-324.	1.7	11
275	Mechanisms of crystallization of bulk GaN from the solution under high N2 pressure. Journal of Crystal Growth, 2002, 246, 177-186.	0.7	54
276	Directional crystallization of GaN on high-pressure solution grown substrates by growth from solution and HVPE. Journal of Crystal Growth, 2002, 246, 194-206.	0.7	32
277	Vacancies as compensating centers in bulk GaN: doping effects. Journal of Crystal Growth, 2002, 246, 281-286.	0.7	25
278	Relationship between Sample Morphology and Carrier Diffusion Length in GaN Thin Films. Acta Physica Polonica A, 2002, 102, 627-632.	0.2	1
279	Measurement of Very Small Zeeman Splittings in GaN:Mn,Mg by Faraday Rotation. Acta Physica Polonica A, 2002, 102, 695-699.	0.2	3
280	Seeded growth of GaN at high N2 pressure on (0001) polar surfaces of GaN single crystalline substrates. Materials Science in Semiconductor Processing, 2001, 4, 535-541.	1.9	5
281	Crystal growth of aluminum nitride under high pressure of nitrogen. Materials Science in Semiconductor Processing, 2001, 4, 543-548.	1.9	39
282	The role of oxygen and hydrogen in GaN. Physica B: Condensed Matter, 2001, 308-310, 117-121.	1.3	10
283	Growth and Doping of GaN and AlN Single Crystals under High Nitrogen Pressure. Crystal Research and Technology, 2001, 36, 771-787.	0.6	25
284	Optical and electrical properties of Be doped GaN bulk crystals. Journal of Crystal Growth, 2001, 230, 368-371.	0.7	14
285	High-nitrogen-pressure growth of GaN single crystals: doping and physical properties. Journal of Physics Condensed Matter, 2001, 13, 8881-8890.	0.7	29
286	Temperature dependence of electrical properties of gallium-nitride bulk single crystals doped with Mg and their evolution with annealing. Journal of Applied Physics, 2001, 89, 7960-7965.	1.1	44
287	Blue Laser on High N ₂ Pressure-Grown Bulk GaN. Acta Physica Polonica A, 2001, 100, 229-232.	0.2	17
288	The influence of erbium on the physical properties of GaN crystals grown from N solution in Ga at high nitrogen pressure. High Pressure Research, 2000, 18, 35-39.	0.4	0

#	Article	IF	CITATIONS
289	Electron spin resonance of erbium in gallium nitride. Solid State Communications, 2000, 114, 39-42.	0.9	13
290	Different character of the donor-acceptor pair-related 3.27 eV band and blue photoluminescence in Mg-doped GaN. Hydrostatic pressure studies. Physical Review B, 2000, 62, 10151-10157.	1.1	35
291	Propagation of phonon pulses in crystalline GaN. Physica B: Condensed Matter, 1999, 263-264, 727-729.	1.3	3
292	High pressure direct synthesis of Ill–V nitrides. Physica B: Condensed Matter, 1999, 265, 1-5.	1.3	18
293	Epitaxy of ternary nitrides on GaN single crystals. Journal of Crystal Growth, 1999, 198-199, 1061-1065.	0.7	8
294	(GaMg)N new semiconductor grown at high pressure of nitrogen. Journal of Crystal Growth, 1999, 207, 27-29.	0.7	4
295	Micro Defects in Nearly Dislocation Free GaN Doped with Mg during High Pressure Crystallization. Physica Status Solidi (B): Basic Research, 1999, 216, 537-540.	0.7	6
296	(GaMg)N — New Wide Band Gap Semiconductor. Physica Status Solidi A, 1999, 176, 343-346.	1.7	3
297	Synthesis of oxygen-free aluminium nitride ceramics. Journal of Materials Science, 1998, 33, 3321-3324.	1.7	10
298	Doping of Homoepitaxial GaN Layers. Physica Status Solidi (B): Basic Research, 1998, 210, 437-443.	0.7	39
299	Thermal properties of indium nitride. Journal of Physics and Chemistry of Solids, 1998, 59, 289-295.	1.9	110
300	Effects of defect scattering on the photoluminescence of exciton-polaritons in n-GaN. Solid State Communications, 1998, 105, 497-501.	0.9	17
301	GaN Single Crystals Grown by High Pressure Solution Method Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 760-762.	0.1	2
302	Homoepitaxial layers of gallium nitride grown by metalorganic vapour phase epitaxy. Semiconductor Science and Technology, 1997, 12, 240-243.	1.0	10
303	GaN Crystals: Growth and Doping Under Pressure. Materials Research Society Symposia Proceedings, 1997, 482, 115.	0.1	24
304	Influence of free electrons and point defects on the lattice parameters and thermal expansion of gallium nitride. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 585-590.	0.4	2
305	Polarity identification of GaN bulk single crystals (0001) surface by Auger electron spectroscopy. Crystal Research and Technology, 1997, 32, 229-233.	0.6	4
306	High Resistivity GaN Single Crystalline Substrates. Acta Physica Polonica A, 1997, 92, 958-962.	0.2	30

#	Article	IF	CITATIONS
307	Homoepitaxial growth of GaN using molecular beam epitaxy. Journal of Applied Physics, 1996, 80, 2195-2198.	1.1	35
308	Lattice parameters of gallium nitride. Applied Physics Letters, 1996, 69, 73-75.	1.5	373
309	Recent Results in the Crystal Growth of GaN at High N ₂ Pressure. MRS Internet Journal of Nitride Semiconductor Research, 1996, 1, 1.	1.0	23
310	Properties Of Homoepitaxially Mbe-Grown Gan. Materials Research Society Symposia Proceedings, 1996, 423, 329.	0.1	2
311	GaN Crystals Grown in the Increased Volume High-Pressure Reactors. Materials Research Society Symposia Proceedings, 1996, 449, 35.	0.1	21
312	Photoluminescence study on GaN homoepitaxial layers grown by molecular beam epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1996, 1, 1.	1.0	23
313	Structural characterization of bulk GaN crystals grown under high hydrostatic pressure. Journal of Electronic Materials, 1996, 25, 1545-1550.	1.0	85
314	Luminescence and reflectivity in the exciton region of homoepitaxial GaN layers grown on GaN substrates. Solid State Communications, 1996, 97, 919-922.	0.9	130
315	The microstructure of gallium nitride monocrystals grown at high pressure. Journal of Crystal Growth, 1996, 169, 235-242.	0.7	51
316	Pressure and Timeâ€Resolved Photoluminescence Studies of Mgâ€Đoped and Undoped GaN. Physica Status Solidi (B): Basic Research, 1996, 198, 235-241.	0.7	11
317	Thermal Expansion of GaN Bulk Crystals and Homoepitaxial Layers. Acta Physica Polonica A, 1996, 90, 887-890.	0.2	16
318	Coupling of LO Phonons to Excitons in GaN. Acta Physica Polonica A, 1996, 90, 981-984.	0.2	1
319	Structural Defects in Heteroepitaxial and Homoepitaxial GaN. Materials Research Society Symposia Proceedings, 1995, 395, 351.	0.1	40
320	III–V Nitrides—thermodynamics and crystal growth at high N2 pressure. Journal of Physics and Chemistry of Solids, 1995, 56, 639-647.	1.9	130
321	Growth and Properties of Bulk Single Crystals of GaN. Materials Research Society Symposia Proceedings, 1995, 395, 15.	0.1	6
322	Lattice constants, thermal expansion and compressibility of gallium nitride. Journal Physics D: Applied Physics, 1995, 28, A149-A153.	1.3	65
323	Mechanism of yellow luminescence in GaN. Applied Physics Letters, 1995, 67, 2188-2190.	1.5	208
324	Crystallographic Properties of Bulk GaN Crystals Grown at High Pressure. Acta Physica Polonica A, 1995, 88, 799-802.	0.2	4

#	Article	IF	CITATIONS
325	Phase diagram determination of II-VI semiconductors. Thermochimica Acta, 1994, 245, 207-217.	1.2	7
326	Stability of indium nitride at N2 pressure up to 20 kbar. AlP Conference Proceedings, 1994, , .	0.3	8
327	X-ray examination of GaN single crystals grown at high hydrostatic pressure. Journal of Crystal Growth, 1993, 126, 601-604.	0.7	46
328	Crystal growth of III-N compounds under high nitrogen pressure. Physica B: Condensed Matter, 1993, 185, 99-102.	1.3	43
329	Phase Transformations and p-T Diagram of Some HgX Compounds (X=S, Se, Te). Japanese Journal of Applied Physics, 1993, 32, 26.	0.8	6
330	Crystal growth of III-N compounds under high nitrogen pressure. , 1993, , 99-102.		0
331	DTA determination of the high-pressure-high-temperature phase diagram of CdSe. Semiconductor Science and Technology, 1992, 7, 994-998.	1.0	3
332	P-T diagram of II-VI compounds: HgSe and HgTe. High Pressure Research, 1992, 9, 153-156.	0.4	1
333	High pressure, high temperature them determination of triple point in CdSe. High Pressure Research, 1992, 10, 420-423.	0.4	Ο
334	Synthesis of A1N under high nitrogen pressure. High Pressure Research, 1992, 9, 288-291.	0.4	4
335	On the liquidus curve for GaN. High Pressure Research, 1991, 7, 284-286.	0.4	9
336	High pressure phase transition in aluminium nitride. Solid State Communications, 1991, 79, 1033-1034.	0.9	65
337	Nonpolar GaN Quasi-Wafers Sliced from Bulk GaN Crystals Grown by High-Pressure Solution and HVPE Methods. , 0, , 53-71.		1
338	GaN Bulk Substrates Grown under Pressure from Solution in Gallium. , 0, , 173-207.		3
339	A Monolithic White-Light LED Based on GaN Doped with Be. Advances in Science and Technology, 0, , .	0.2	1
340	Synchrotron X-Ray Topography Characterization of Power Electronic GaN Materials. Materials Science Forum, 0, 1062, 351-355.	0.3	0