
Alison Curnow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7954888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental investigation of a combinational iron chelating protoporphyrin IX prodrug for fluorescence detection and photodynamic therapy. Lasers in Medical Science, 2022, 37, 1155-1166.	2.1	4
2	Monte Carlo Simulations of Heat Deposition During Photothermal Skin Cancer Therapy Using Nanoparticles. Biomolecules, 2019, 9, 343.	4.0	13
3	Improving in vitro photodynamic therapy through the development of a novel iron chelating aminolaevulinic acid prodrug. Photodiagnosis and Photodynamic Therapy, 2019, 25, 157-165.	2.6	17
4	Regression Analysis of Protoporphyrin IX Measurements Obtained During Dermatological Photodynamic Therapy. Cancers, 2019, 11, 72.	3.7	14
5	Experimental findings utilising a new iron chelating ALA prodrug to enhance protoporphyrin IX-induced photodynamic therapy. , 2019, , .		0
6	An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy. Lasers in Surgery and Medicine, 2018, 50, 552-565.	2.1	17
7	Stress and Unusual Events Exacerbate Symptoms in Menière's Disease: A Longitudinal Study. Otology and Neurotology, 2018, 39, 73-81.	1.3	14
8	Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia. Free Radical Biology and Medicine, 2018, 126, 322-333.	2.9	22
9	An Evaluation of Root Phytochemicals Derived from <i>Althea officinalis</i> (Marshmallow) and <i>Astragalus membranaceus</i> as Potential Natural Components of UV Protecting Dermatological Formulations. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	4.0	15
10	The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species. Redox Biology, 2016, 9, 90-99.	9.0	14
11	The importance of iron chelation and iron availability during PpIX-induced photodynamic therapy. Photonics & Lasers in Medicine, 2015, 4, .	0.2	8
12	The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions. Photodiagnosis and Photodynamic Therapy, 2013, 10, 575-582.	2.6	13
13	The Cellular and Molecular Carcinogenic Effects of Radon Exposure: A Review. International Journal of Molecular Sciences, 2013, 14, 14024-14063.	4.1	104
14	Monitoring the accumulation and dissipation of the photosensitizer protoporphyrin IX during standard dermatological methyl-aminolevulinate photodynamic therapy utilizing non-invasive fluorescence imaging and quantification. Photodiagnosis and Photodynamic Therapy, 2011, 8, 30-38.	2.6	21
15	An <i>In Vitro</i> Comparison of the Effects of the Iron helating Agents, CP94 and Dexrazoxane, on Protoporphyrin IX Accumulation for Photodynamic Therapy and/or Fluorescence Guided Resection. Photochemistry and Photobiology, 2011, 87, 1419-1426.	2.5	30
16	The relationship between protoporphyrin IX photobleaching during realâ€ŧime dermatological methylâ€aminolevulinate photodynamic therapy (MALâ€PDT) and subsequent clinical outcome. Lasers in Surgery and Medicine, 2010, 42, 613-619.	2.1	50
17	The Hydroxypyridinone Iron Chelator CP94 Can Enhance PpIXâ€induced PDT of Cultured Human Glioma Cells. Photochemistry and Photobiology, 2010, 86, 1154-1160.	2.5	42
18	Validation of a non-invasive fluorescence imaging system to monitor dermatological PDT. Photodiagnosis and Photodynamic Therapy, 2010, 7, 86-97.	2.6	25

#	Article	IF	CITATIONS
19	Enhancement of methyl-aminolevulinate photodynamic therapy by iron chelation with CP94: an in vitro investigation and clinical dose-escalating safety study for the treatment of nodular basal cell carcinoma. Journal of Cancer Research and Clinical Oncology, 2008, 134, 841-849.	2.5	32
20	Direct Comparison of δ-Aminolevulinic Acid and Methyl-Aminolevulinate-Derived Protoporphyrin IX Accumulations Potentiated by Desferrioxamine or the Novel Hydroxypyridinone Iron Chelator CP94 in Cultured Human Cells. Photochemistry and Photobiology, 2007, 83, 766-773.	2.5	41
21	Biochemical Manipulation via Iron Chelation to Enhance Porphyrin Production from Porphyrin Precursors. Journal of Environmental Pathology, Toxicology and Oncology, 2007, 26, 89-103.	1.2	23
22	Comparing and combining light dose fractionation and iron chelation to enhance experimental photodynamic therapy with aminolevulinic acid. Lasers in Surgery and Medicine, 2006, 38, 325-331.	2.1	32
23	Light Dose Fractionation to Enhance Photodynamic Therapy Using 5-Aminolevulinic Acid in the Normal Rat Colon. Photochemistry and Photobiology, 1999, 69, 71-76.	2.5	90
24	Light Dose Fractionation to Enhance Photodynamic Therapy Using 5-Aminolevulinic Acid in the Normal Rat Colon. Photochemistry and Photobiology, 1999, 69, 71.	2.5	2