Shikuan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/795488/publications.pdf

Version: 2024-02-01

69 papers

4,471 citations

35 h-index 102432 66 g-index

72 all docs 72 docs citations

times ranked

72

6042 citing authors

#	Article	IF	CITATIONS
1	Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 268-273.	3.3	591
2	Hydrophilic directional slippery rough surfaces for water harvesting. Science Advances, 2018, 4, eaaq0919.	4.7	386
3	Slippery Wenzel State. ACS Nano, 2015, 9, 9260-9267.	7.3	207
4	Surface patterning using templates: concept, properties and device applications. Chemical Society Reviews, 2011, 40, 1247-1258.	18.7	190
5	A Switchable Cross‧pecies Liquid Repellent Surface. Advanced Materials, 2017, 29, 1604641.	11.1	186
6	Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab on A Chip, 2012, 12, 2097.	3.1	185
7	Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function. Nano Letters, 2020, 20, 7304-7312.	4.5	184
8	Controllable Pt/ZnO Porous Nanocages with Improved Photocatalytic Activity. Journal of Physical Chemistry C, 2008, 112, 19620-19624.	1.5	157
9	Local hot charge density regulation: Vibration-free pyroelectric nanogenerator for effectively enhancing catalysis and in-situ surface enhanced Raman scattering monitoring. Nano Energy, 2021, 81, 105585.	8.2	154
10	Volumeâ€Enhanced Raman Scattering Detection of Viruses. Small, 2019, 15, e1805516.	5. 2	150
11	Surface Nanometerâ€Scale Patterning in Realizing Largeâ€Scale Ordered Arrays of Metallic Nanoshells with Wellâ€Defined Structures and Controllable Properties. Advanced Functional Materials, 2010, 20, 2527-2533.	7.8	124
12	Templateâ€Confined Dewetting Process to Surface Nanopatterns: Fabrication, Structural Tunability, and Structureâ€Related Properties. Advanced Functional Materials, 2011, 21, 2446-2455.	7.8	120
13	Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5136-5146.	4.0	102
14	Ultra-antireflective synthetic brochosomes. Nature Communications, 2017, 8, 1285.	5.8	101
15	Luminescent hollow carbon shells and fullerene-like carbon spheres produced by laser ablation with toluene. Journal of Materials Chemistry, 2011, 21, 4432.	6.7	87
16	Ultra-fine \hat{I}^2 -SiC quantum dots fabricated by laser ablation in reactive liquid at room temperature and their violet emission. Journal of Materials Chemistry, 2009, 19, 7119.	6.7	79
17	Reshaping Formation and Luminescence Evolution of ZnO Quantum Dots by Laser-Induced Fragmentation in Liquid. Journal of Physical Chemistry C, 2011, 115, 5038-5043.	1.5	70
18	Largeâ€Scale Fabrication of Threeâ€Dimensional Surface Patterns Using Templateâ€Defined Electrochemical Deposition. Advanced Functional Materials, 2013, 23, 720-730.	7.8	67

#	Article	IF	CITATIONS
19	Fabrication and Characterization of Beaded SiC Quantum Rings with Anomalous Red Spectral Shift. Advanced Materials, 2012, 24, 5598-5603.	11.1	65
20	Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab on A Chip, 2013, 13, 1772.	3.1	63
21	Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale, 2011, 3, 2768.	2.8	62
22	A Potential Checkmate to Lead: Bismuth in Organometal Halide Perovskites, Structure, Properties, and Applications. Advanced Science, 2020, 7, 1903143.	5.6	60
23	Aging-Induced Self-Assembly of Zn/ZnO Treelike Nanostructures from Nanoparticles and Enhanced Visible Emission. Crystal Growth and Design, 2007, 7, 1092-1097.	1.4	56
24	Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence. Journal of Applied Physics, 2008, 104, 023516.	1.1	49
25	From Nanoparticles to Nanoplates: Preferential Oriented Connection of Ag Colloids during Electrophoretic Deposition. Journal of Physical Chemistry C, 2009, 113, 7692-7696.	1.5	44
26	Electrochemically created highly surface roughened Ag nanoplate arrays for SERS biosensing applications. Journal of Materials Chemistry C, 2014, 2, 8350-8356.	2.7	43
27	Electrodeposited surfaces with reversibly switching interfacial properties. Science Advances, 2019, 5, eaax0380.	4.7	43
28	Superhydrophobic surface enhanced Raman scattering sensing using Janus particle arrays realized by site-specific electrochemical growth. Journal of Materials Chemistry C, 2014, 2, 542-547.	2.7	41
29	Springtailâ€Inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasiâ€Doubly Reentrant Structures. Small, 2020, 16, e2000779.	5.2	41
30	Optical Study of Redox Behavior of Silicon Nanoparticles Induced by Laser Ablation in Liquid. Journal of Physical Chemistry C, 2009, 113, 6480-6484.	1.5	39
31	General and Simple Route to Micro/Nanostructured Hollow-Sphere Arrays Based on Electrophoresis of Colloids Induced by Laser Ablation in Liquid. Langmuir, 2009, 25, 8287-8291.	1.6	39
32	Laser-induced reshaping of particles aiming at energy-saving applications. Journal of Materials Chemistry, 2012, 22, 15947.	6.7	39
33	Dramatic excitation dependence of strong and stable blue luminescence of ZnO hollow nanoparticles. Applied Physics Letters, 2009, 95, 191904.	1.5	38
34	Design principle of all-inorganic halide perovskite-related nanocrystals. Journal of Materials Chemistry C, 2018, 6, 12484-12492.	2.7	38
35	Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates. ACS Sensors, 2018, 3, 2343-2350.	4.0	35
36	Bioinspired Brochosomes as Broadband and Omnidirectional Surface-Enhanced Raman Scattering Substrates. Journal of Physical Chemistry Letters, 2019, 10, 6484-6491.	2.1	35

#	Article	IF	CITATIONS
37	Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device. Scientific Reports, 2015, 5, 12572.	1.6	31
38	Ultrasensitive SERS detection of exhaled biomarkers of lung cancer using a multifunctional solid phase extraction membrane. Nanoscale, 2021, 13, 13344-13352.	2.8	31
39	Porous Cobalt Oxynitride Nanosheets for Efficient Electrocatalytic Water Oxidation. ChemSusChem, 2018, 11, 1479-1485.	3.6	29
40	Template-directed dewetting of a gold membrane to fabricate highly SERS-active substrates. Journal of Materials Chemistry, 2011, 21, 14031.	6.7	28
41	Electrocarving during Electrodeposition Growth. Advanced Materials, 2018, 30, e1805686.	11.1	28
42	Laser irradiation-induced laminated graphene/MoS ₂ composites with synergistically improved tribological properties. Nanotechnology, 2018, 29, 265704.	1.3	26
43	Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates. Journal of Colloid and Interface Science, 2022, 620, 388-398.	5.0	24
44	Breaking the nanoparticle's dispersible limit via rotatable surface ligands. Nature Communications, 2022, 13, .	5.8	23
45	Enhanced tribology properties of ZnO/Al2O3 composite nanoparticles as liquid lubricating additives. Journal of Sol-Gel Science and Technology, 2012, 61, 501-508.	1.1	21
46	Durable Broadband and Omnidirectional Ultra-antireflective Surfaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40180-40188.	4.0	21
47	Ultrastable Laurionite Spontaneously Encapsulates Reduced-dimensional Lead Halide Perovskites. Nano Letters, 2020, 20, 2316-2325.	4.5	20
48	Aqueous phase fabrication and conversion of Pb(OH)Br into a CH ₃ NH ₃ PbBr ₃ perovskite and its application in resistive memory switching devices. Green Chemistry, 2020, 22, 3608-3614.	4.6	19
49	The effect of dodecylammonium chloride on the film morphology, crystallinity, and performance of lead-free Bi-based solution-processed photovoltaics devices. Solar Energy, 2020, 207, 1356-1363.	2.9	18
50	Nanoporous silver nanorods as surface-enhanced Raman scattering substrates. Biosensors and Bioelectronics, 2022, 202, 114004.	5.3	18
51	Combining the Masking and Scaffolding Modalities of Colloidal Crystal Templates: Plasmonic Nanoparticle Arrays with Multiple Periodicities. Chemistry of Materials, 2014, 26, 6432-6438.	3.2	14
52	Ultrasmall CsPbBr ₃ Quantum Dots with Bright and Wide Blue Emissions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100134.	1.2	14
53	Boundary layer viscosity of CNT-doped liquid crystals: effects of phase behavior. Rheologica Acta, 2013, 52, 939-947.	1.1	12
54	Circumventing silver oxidation induced performance degradation of silver surface-enhanced Raman scattering substrates. Nanotechnology, 2018, 29, 414001.	1.3	12

#	Article	IF	Citations
55	Surface Plasmon Resonance in Periodic Hexagonal Lattice Arrays of Silver Nanodisks. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	11
56	Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	11
57	Surface enhanced Raman scattering substrates prepared by thermal evaporation on liquid surfaces. Nanotechnology, 2018, 29, 375502.	1.3	11
58	Self-assembled template-confined growth of ultrathin CsPbBr3 nanowires. Applied Materials Today, 2020, 18, 100449.	2.3	10
59	Cupriferous Silver Peroxysulfite Superpyramids as a Universal and Long-Lasting Agent to Eradicate Multidrug-Resistant Bacteria and Promote Wound Healing. ACS Applied Bio Materials, 2021, 4, 3729-3738.	2.3	10
60	Nontoxic and Less Toxic Hybrid Perovskites: a Synergistic Strategy for Sustainable Photovoltaic Devices. Solar Rrl, 2021, 5, 2100212.	3.1	10
61	Electrodeposition: Electrocarving during Electrodeposition Growth (Adv. Mater. 51/2018). Advanced Materials, 2018, 30, 1870395.	11.1	8
62	Growth temperature-dependent performance of planar CH ₃ NH ₃ Pbl ₃ solar cells fabricated by a two-step subliming vapor method below 120 °C. RSC Advances, 2016, 6, 47459-47467.	1.7	7
63	Seed/ligand-cooperative growth of dense Au nanospikes on magnetic microparticles for SERS applications. Journal of Materials Chemistry C, 2022, 10, 3368-3374.	2.7	6
64	Laurionite Competes with 2D Ruddlesden–Popper Perovskites During the Saturation Recrystallization Process. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6505-6514.	4.0	4
65	An overview of the pressure- and strain-induced changes in the structural and optoelectronic properties of organometal halide perovskites. Solar Energy, 2022, 239, 198-220.	2.9	4
66	Plasmonic Polycrystals within Microbowl Arrays. Advanced Optical Materials, 2022, 10, .	3.6	4
67	Sustainable fabrication of ultralong Pb(OH)Br nanowires and their conversion to luminescent CH ₃ NH ₃ PbBr ₃ nanowires. Green Chemistry, 2021, 23, 7956-7962.	4.6	3
68	Reply to "Comment on â€~From Nanoparticles to Nanoplates: Preferential Oriented Connection of Ag Colloids during Electrophoretic Deposition'― Journal of Physical Chemistry C, 2011, 115, 4982-4983.	1.5	2
69	Drawing at the Nanoscale through Macroscopic Movement. Small Methods, 2022, 6, e2200293.	4.6	2