Ichiro Ueno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7954842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge. Physics of Fluids, 2003, 15, 408-416.	4.0	103
2	Report on Microgravity Experiments of Marangoni Convection Aboard International Space Station. Journal of Heat Transfer, 2012, 134, .	2.1	53
3	Enhancement of heat transfer in subcooled flow boiling with microbubble emission. Experimental Thermal and Fluid Science, 2005, 29, 827-832.	2.7	43
4	Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity. Journal of Crystal Growth, 2015, 420, 57-63.	1.5	43
5	Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges. Microgravity Science and Technology, 2018, 30, 599-610.	1.4	33
6	3D PTV measurement of oscillatory thermocapillary convection in half-zone liquid bridge. Experiments in Fluids, 2005, 38, 285-290.	2.4	32
7	Effect of ambient fluid flow upon onset of oscillatory thermocapillary convection in half-zone liquid bridge. Microgravity Science and Technology, 2005, 16, 176-180.	1.4	31
8	Dynamic particle accumulation structure (PAS) in half-zone liquid bridge – Reconstruction of particle motion by 3-D PTV. Advances in Space Research, 2008, 41, 2145-2149.	2.6	30
9	Limit cycles for the motion of finite-size particles in axisymmetric thermocapillary flows in liquid bridges. Physics of Fluids, 2017, 29, .	4.0	30
10	3-D PTV measurement of Marangoni convection in liquid bridge in space experiment. Experiments in Fluids, 2012, 53, 9-20.	2.4	29
11	Condensation and Collapse of Vapor Bubbles Injected in Subcooled Pool. Microgravity Science and Technology, 2011, 23, 73-77.	1.4	28
12	Feedback control of oscillatory thermocapillary convection in a half-zone liquid bridge. Journal of Fluid Mechanics, 2003, 496, 193-211.	3.4	25
13	Thermocapillary-driven flow in a thin liquid film sustained in a rectangular hole with temperature gradient. Acta Astronautica, 2010, 66, 1017-1021.	3.2	23
14	Structure and dynamics of particle-accumulation in thermocapillary liquid bridges. Fluid Dynamics Research, 2014, 46, 041421.	1.3	23
15	Existence Conditions and Formation Process of Second Type of Spiral Loop Particle Accumulation Structure (SL-2 PAS) in Half-zone Liquid Bridge. Microgravity Science and Technology, 2017, 29, 263-274.	1.4	23
16	The Stability of a Thermocapillary-Buoyant Flow in a Liquid Bridge with Heat Transfer Through the Interface. Microgravity Science and Technology, 2014, 26, 17-28.	1.4	21
17	Experimental study on dynamics of coherent structures formed by inertial solid particles in three-dimensional periodic flows. Chaos, 2016, 26, 073106.	2.5	21
18	Transition to chaotic thermocapillary convection in a half zone liquid bridge. International Journal of Heat and Mass Transfer, 2015, 89, 903-912.	4.8	20

#	Article	IF	CITATIONS
19	Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool. International Journal of Heat and Mass Transfer, 2016, 101, 240-250.	4.8	20
20	Hydrothermal Wave Instability in a High-Aspect-Ratio Liquid Bridge of Pr >  200. Microgravity Science and Technology, 2013, 25, 43-58.	1.4	18
21	Semi-local friction factor of turbulent gas flow through rectangular microchannels. International Journal of Heat and Mass Transfer, 2016, 98, 643-649.	4.8	17
22	Experimental Study on Formation of Particle Accumulation Structures by a Thermocapillary Flow in a Deformable Liquid Column. Microgravity Science and Technology, 2014, 26, 365-374.	1.4	16
23	Experimental study of coherent structures of finite-size particles in thermocapillary liquid bridges. Physical Review Fluids, 2019, 4, .	2.5	15
24	Effect of Static Deformation on Basic Flow Patterns in Thermocapillary-Driven Free Liquid Film. Microgravity Science and Technology, 2017, 29, 29-36.	1.4	14
25	Flow transition and hydrothermal wave instability of thermocapillary-driven flow in a free rectangular liquid film. International Journal of Heat and Mass Transfer, 2018, 116, 635-641.	4.8	13
26	Experimental study on behaviors of low-Stokes number particles in weakly chaotic structures induced by thermocapillary effect within a closed system with a free surface. Physical Review Fluids, 2019, 4, .	2.5	13
27	Behavior of vapor bubble in subcooled pool. Microgravity Science and Technology, 2007, 19, 128-129.	1.4	12
28	Dynamic Particle Accumulation Structure due to Thermocapillary Effect in Noncylindrical Halfâ€Zone Liquid Bridge. Annals of the New York Academy of Sciences, 2009, 1161, 240-245.	3.8	12
29	Precursor Film Formation Process Ahead Macroscopic Contact Line of Spreading Droplet on Smooth Substrate. Journal of Heat Transfer, 2012, 134, .	2.1	12
30	Interfacial instability of a condensing vapor bubble in a subcooled liquid. European Physical Journal: Special Topics, 2015, 224, 415-424.	2.6	11
31	Flow Patterns Induced by the Thermocapillary Effect and Resultant Structures of Suspended Particles in a Hanging Droplet. Langmuir, 2017, 33, 13197-13206.	3.5	11
32	Thermal-flow patterns of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si16.svg"> <mml:mrow> <mml:mi>m </mml:mi> <mml:mo linebreak="goodbreak"> = <mml:mn> 1 </mml:mn> </mml:mo </mml:mrow> </mml:math> in thermocapillary liquid bridges of high aspect ratio with free-surface heat transfer. International	4.8	11
33	Journal of Heat and Mass Transfer, 2021, 173, 121196. Transient Growth Process of Precursor Film at Early Stage of Droplet Spreading. Journal of Thermal Science and Technology, 2012, 7, 487-496.	1.1	10
34	Sharp acceleration of a macroscopic contact line induced by a particle. Journal of Fluid Mechanics, 2017, 830, .	3.4	9
35	Terrestrial and microgravity experiments on onset of oscillatory thermocapillary-driven convection in hanging droplets. International Journal of Heat and Mass Transfer, 2018, 123, 945-956.	4.8	9
36	Secondary instability induced by thermocapillary effect in half-zone liquid bridge of high Prandtl number fluid. Mechanical Engineering Letters, 2019, 5, 19-00014-19-00014.	0.6	9

#	Article	IF	CITATIONS
37	Transition and Modal Structure of Oscillatory Marangoni Convection in Liquid Bridge 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2001, 67, 1466-1473.	0.2	8
38	Existing length of precursor film on inclined solid substrate. Microgravity Science and Technology, 2007, 19, 81-83.	1.4	8
39	Experimental Study on Coherent Structures by Particles Suspended in Half-Zone Thermocapillary Liquid Bridges: Review. Fluids, 2021, 6, 105.	1.7	8
40	Control of local wetting by microscopic particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 615-620.	4.7	7
41	Coherent structures of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>m</mml:mi><mml:mo>=by low-Stokes-number particles suspended in a half-zone liquid bridge of high aspect ratio: Microgravity and terrestrial experiments. Physical Review Fluids. 2022. 7</mml:mo></mml:mrow></mml:math 	no>∢mml: 2.5	mn>1
42	Space Experiment of Marangoni Convection on International Space Station. , 2010, , .		6
43	Formation of Particle Accumulation Structure (PAS) in Half-Zone Liquid Bridge under an Effect of Thermo-Fluid Flow of Ambient Gas. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2012, 10, Ph_33-Ph_37.	0.2	6
44	Supersonic micro-jet of straight micro-tube exit. Journal of Thermal Science and Technology, 2015, 10, JTST0026-JTST0026.	1.1	6
45	Pumping effect of heterogeneous meniscus formed around spherical particle. Journal of Colloid and Interface Science, 2020, 562, 133-141.	9.4	6
46	Quick Liquid Propagation on a Linear Array of Micropillars. Langmuir, 2019, 35, 9139-9145.	3.5	5
47	Effect of wettability on viscous fluid impregnation in single-layer woven-fibre bundles driven by pressure difference. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106049.	7.6	5
48	Spatial–temporal thermalâ€fluid behaviors of microbubble emission boiling (MEB). AICHE Journal, 2021, 67, e17193.	3.6	5
49	On homogeneity of vapor bubbles' oscillation and corresponding heat transfer characteristics and boiling sound in microbubble emission boiling (MEB). International Journal of Heat and Mass Transfer, 2022, 188, 122564.	4.8	5
50	Detection of Advancing Edge and Length of Precursor Film Ahead of Macroscopic Contact Line of Droplet Spreading on Solid Substrate. Annals of the New York Academy of Sciences, 2009, 1161, 292-303.	3.8	4
51	Microbubble Formation in Abrupt Condensation of Vapor Bubble Exposed to Subcooled Pool. , 2009, , .		4
52	Total Temperature Measurement of Laminar Gas Flow at Microtube Outlet: Cooled From the Wall. Heat Transfer Engineering, 2014, 35, 142-149.	1.9	4
53	Enhancement of Meniscus Pump by Multiple Particles. Langmuir, 2020, 36, 4447-4453.	3.5	4
54	Correlation Between Behaviors of the Vapor Bubbles and the Characteristics of the Heat Transfer Over the Heated Surface on MEB. , 2013, , .		4

4

#	Article	IF	CITATIONS
55	Precursor film ahead droplet on solid with temperature gradient. Microgravity Science and Technology, 2007, 19, 106-108.	1.4	3
56	Experimental Investigations of Turbulent Gas Flow in a Micro-Channel. , 2011, , .		3
57	Effect of suspended particles on spreading of volatile droplet on solid substrate. Journal of Visualization, 2011, 14, 285-294.	1.8	3
58	Elevation of the temperature of liquid films caused by rapid rupturing. Physical Review E, 2014, 90, 051004.	2.1	3
59	Hydrothermal-wave Instability and Resultant Flow Patterns Induced by Thermocapillary Effect in a Half-Zone Liquid Bridge of High Aspect Ratio. , 2014, , .		3
60	Effect of Suspended Particles on the Drying Process of a Carrier-Fluid Droplet Sitting on a Solid Surface. Annals of the New York Academy of Sciences, 2009, 1161, 234-239.	3.8	2
61	Condensation and Collapse of Vapor Bubble Injected to Subcooled Pool. , 2013, , .		2
62	A Study on High Heat Flux Cooling for Electronic Devices using Subcooled Flow Boiling : Microbubble emission boiling of binary mixture. The Proceedings of the Thermal Engineering Conference, 2003, 2003, 83-84.	0.0	2
63	Heat Transfer Enhancement in Subcooled Boiling with Ultrasonic Field. Transactions of the Japan Society for Aeronautical and Space Sciences Space Technology Japan, 2009, 7, Ph_67-Ph_70.	0.2	2
64	Heat Transfer of Turbulent Gaseous Flow in Microtubes With Constant Wall Temperature. Journal of Heat Transfer, 2022, 144, .	2.1	2
65	Particle Accumulation Structures in Thermocapillary Convection of Liquid Bridge. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2004, 70, 997-1005.	0.2	1
66	Characteristics of Turbulent Gas Flow in Microtubes. , 2012, , .		1
67	Total Temperature Measurement of Turbulent Gas Flow at Microtube Exit. , 2013, , .		1
68	Detection of Advancing Edge and Existing Length of Precursor Film Ahead Macroscopic Contact Line of Droplet Spreading on Solid Substrate. , 2008, , .		1
69	Microbubble Formation in Collapsing Process of a Single Vapor Bubble Injected in Subcooled Pool. , 2009, , .		1
70	Behavior of Particles Suspended in Non-Coalescence Droplets Formed Between Coaxial Rods With Temperature Difference. , 2007, , .		1
71	Experimental Investigations of Laminar, Transitional to Turbulent Gas Flow in a Micro-Channel. , 2010, , .		1
72	Azimuthal wave number control of oscillatory thermocapillary convection in a liquid bridge. Heat Transfer - Asian Research, 2005, 34, 460-469.	2.8	0

#	Article	IF	CITATIONS
73	Precursor Film Formation Process Ahead Macroscopic Contact Line of Spreading Droplet on Smooth Substrate. , 2009, , .		0
74	Shape Oscillation of Bubble(s) in Acoustic Field. , 2010, , .		0
75	Precursor Film Formation of Spreading Droplet. , 2010, , .		0
76	Coalescence Phenomena of Liquid Droplets in a Circular Tube. , 2011, , .		0
77	Condensation and Collapse of Vapor Bubble Injected to Subcooled Pool. Journal of Heat Transfer, 2011, 133, .	2.1	0
78	Experimental Investigations of Laminar, Transitional to Turbulent Gas Flow in Rib-Patterned Micro-Channels. , 2011, , .		0
79	Flow and Heat Transfer Characteristics of Turbulent Gas Flow in Microtube with Constant Heat Flux. Journal of Physics: Conference Series, 2012, 362, 012022.	0.4	0
80	Influence of Reynolds Number of Tube Flow on Coalescence of Droplets in a Tube Creeping Flow. , 2015, , .		0
81	Investigation of temperature increase associated with liquid deformations at the nanometer scale. Physica A: Statistical Mechanics and Its Applications, 2015, 438, 107-113.	2.6	0
82	On Cooling Method for Power Electronics using Subcooled Flow Boiling. The Proceedings of Conference of Kanto Branch, 2004, 2004.10, 409-410.	0.0	0
83	Molecular Dynamics of Rupture Phenomenon in a Liquid Film on Nanowire Under Isothermal Condition. , 2009, , .		0
84	Mixing Behaviour of Coalescing Droplets in a Tube. , 2009, , .		0
85	OS0606 Evaluation of interfacial Strength in Fiber Reinforced Composite. The Proceedings of the Materials and Mechanics Conference, 2009, 2009, 48-50.	0.0	0
86	J053032 Dewetting of Ultra-thin Liquid Film on Solid Substrate. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _J053032-1J053032-4.	0.0	0
87	Convective Heat Transfer of Turbulent Gas Flow in Micro-Tubes With Constant Wall Temperature (Cooled Case). , 2012, , .		0
88	Visualization of Fluid Dynamics adjacent Solid-Liquid-Gas Boundary Line. Journal of the Visualization Society of Japan, 2013, 33, 8-13.	0.0	0
89	Dewetting Dynamics of Ultra-Thin Liquid Films with Boundary Layer. Japanese Journal of Multiphase Flow, 2016, 29, 477-484.	0.3	0
90	Natural convection induced by unintended horizontal temperature distribution in a narrow-closed container beated from above. International Journal of Heat and Mass Transfer, 2022, 183, 122018	4.8	0

#	Article	IF	Сітат
91	Experimental study on vapor bubble oscillation and boiling sound in microbubble emission boiling (MEB). The Proceedings of the International Conference on Power Engineering (ICOPE), 2021, 2021.15, 2021-0119.	0.0	0