Chih-Hang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7954750/publications.pdf

Version: 2024-02-01

361045 676716 22 1,892 20 22 citations h-index g-index papers 35 35 35 1967 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants, 2021, 7, 198-208.	4.7	62
2	A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. Annual Review of Plant Biology, 2021, 72, 155-184.	8.6	56
3	Dynamic localization of a helper NLR at the plant–pathogen interface underpins pathogen recognition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
4	Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biology, 2021, 19, e3001136.	2.6	69
5	Rapid evolution in plant–microbe interactions – a molecular genomics perspective. New Phytologist, 2020, 225, 1134-1142.	3.5	96
6	<i>NRC4</i> Gene Cluster Is Not Essential for Bacterial Flagellin-Triggered Immunity. Plant Physiology, 2020, 182, 455-459.	2.3	21
7	Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.	3.3	39
8	Overcoming plant blindness in science, education, and society. Plants People Planet, 2019, 1, 169-172.	1.6	58
9	Dude, where is my mutant? <i>Nicotiana benthamiana</i> meets forward genetics. New Phytologist, 2019, 221, 607-610.	3.5	11
10	An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. ELife, $2019, 8, .$	2.8	162
11	The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology, 2018, 44, 108-116.	3.5	92
12	Receptor networks underpin plant immunity. Science, 2018, 360, 1300-1301.	6.0	149
13	Lessons in Effector and NLR Biology of Plant-Microbe Systems. Molecular Plant-Microbe Interactions, 2018, 31, 34-45.	1.4	109
14	NLR network mediates immunity to diverse plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8113-8118.	3.3	330
15	Helper <scp>NLR</scp> proteins <scp>NRC</scp> 2a/b and <scp>NRC</scp> 3 but not <scp>NRC</scp> 1 are required for Ptoâ€mediated cell death and resistance in <i>Nicotiana benthamiana</i> Phytologist, 2016, 209, 1344-1352.	3.5	92
16	Nine things to know about elicitins. New Phytologist, 2016, 212, 888-895.	3.5	84
17	Tomato <i>SOBIR1/EVR</i> Homologs Are Involved in Elicitin Perception and Plant Defense Against the Oomycete Pathogen <i>Phytophthora parasitica</i> Molecular Plant-Microbe Interactions, 2015, 28, 913-926.	1.4	31
18	The "sensor domains―of plant NLR proteins: more than decoys?. Frontiers in Plant Science, 2015, 6, 134.	1.7	78

#	Article	IF	CITATION
19	Rerouting of Plant Late Endocytic Trafficking Toward a Pathogen Interface. Traffic, 2015, 16, 204-226.	1.3	103
20	Viral protein targeting to the cortical endoplasmic reticulum is required for cell–cell spreading in plants. Journal of Cell Biology, 2011, 193, 521-535.	2.3	81
21	Traffic of a Viral Movement Protein Complex to the Highly Curved Tubules of the Cortical Endoplasmic Reticulum. Traffic, 2010, 11, 912-930.	1.3	39
22	Functional Characterization of a Gene Family Encoding Polygalacturonases in Phytophthora parasitica. Molecular Plant-Microbe Interactions, 2008, 21, 480-489.	1.4	30