Yu Jihong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7954425/publications.pdf Version: 2024-02-01

		5896	12946
304	21,324	81	131
papers	citations	h-index	g-index
322	322	322	15599
all docs	docs citations	times ranked	citing authors

Унциномс

#	Article	IF	CITATIONS
1	Applications of Zeolites in Sustainable Chemistry. CheM, 2017, 3, 928-949.	11.7	518
2	In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 2016, 138, 7484-7487.	13.7	507
3	Synthesis of new zeolite structures. Chemical Society Reviews, 2015, 44, 7112-7127.	38.1	460
4	Extra‣argeâ€₽ore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie - International Edition, 2010, 49, 3120-3145.	13.8	453
5	New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 2014, 114, 7268-7316.	47.7	449
6	Zeolite-coated mesh film for efficient oil–water separation. Chemical Science, 2013, 4, 591-595.	7.4	377
7	Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 2011, 333, 1131-1134.	12.6	353
8	Rich Structure Chemistry in the Aluminophosphate Family. Accounts of Chemical Research, 2003, 36, 481-490.	15.6	336
9	Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 2015, 44, 7022-7024.	38.1	333
10	A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature, 2021, 592, 551-557.	27.8	306
11	Insight into the construction of open-framework aluminophosphates. Chemical Society Reviews, 2006, 35, 593.	38.1	304
12	Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 2016, 351, 1188-1191.	12.6	297
13	Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Science Advances, 2017, 3, e1603171.	10.3	286
14	Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie - International Edition, 2019, 58, 18570-18576.	13.8	281
15	Solvatochromic AIE luminogens as supersensitive water detectors in organic solvents and highly efficient cyanide chemosensors in water. Chemical Science, 2014, 5, 2710.	7.4	274
16	Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 7384-7389.	13.8	264
17	Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 2019, 31, e1803966.	21.0	260
18	Needs and trends in rational synthesis of zeolitic materials. Chemical Society Reviews, 2012, 41, 1729-1741.	38.1	239

#	Article	IF	CITATIONS
19	Nanopore‣upported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquidâ€Phase Chemical Hydrogen Storage Materials. Advanced Materials, 2020, 32, e2001818.	21.0	226
20	Nanosize-Enhanced Lifetime of SAPO-34 Catalysts in Methanol-to-Olefin Reactions. Journal of Physical Chemistry C, 2013, 117, 8214-8222.	3.1	224
21	Luminescence antiâ€counterfeiting: From elementary to advanced. Aggregate, 2021, 2, 20-34.	9.9	224
22	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19450-19459.	13.8	221
23	Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chemical Science, 2014, 5, 2804.	7.4	219
24	Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials. Chemical Communications, 2012, 48, 7167.	4.1	214
25	Subnanometric Hybrid Pd-M(OH)2, MÂ= Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation. CheM, 2017, 3, 477-493.	11.7	212
26	Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nature Reviews Materials, 2021, 6, 1156-1174.	48.7	209
27	Rational Approaches toward the Design and Synthesis of Zeolitic Inorganic Open-Framework Materials. Accounts of Chemical Research, 2010, 43, 1195-1204.	15.6	208
28	A Hollow Porous CdS Photocatalyst. Advanced Materials, 2018, 30, e1804368.	21.0	204
29	Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chemical Communications, 2014, 50, 6502.	4.1	179
30	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 20183-20191.	13.8	175
31	The Synthesis of an Extra‣argeâ€Pore Zeolite with Double Threeâ€Ring Building Units and a Low Framework Density. Angewandte Chemie - International Edition, 2010, 49, 4986-4988.	13.8	171
32	State of the Art and Perspectives of Hierarchical Zeolites: Practical Overview of Synthesis Methods and Use in Catalysis. Advanced Materials, 2020, 32, e2004690.	21.0	168
33	Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Advanced Materials, 2020, 32, e2002927.	21.0	165
34	The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. National Science Review, 2018, 5, 542-558.	9.5	158
35	Synthesis and Characterization of High-Quality Zeolite LTA and FAU Single Nanocrystals. Chemistry of Materials, 1998, 10, 1483-1486.	6.7	147
36	Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 2019, 1, 601-611.	8.5	145

#	Article	IF	CITATIONS
37	Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nature Communications, 2017, 8, 575.	12.8	143
38	Amino Acid-Assisted Construction of Single-Crystalline Hierarchical Nanozeolites via Oriented-Aggregation and Intraparticle Ripening. Journal of the American Chemical Society, 2019, 141, 3772-3776.	13.7	131
39	Methylviologen-templated layered bimetal phosphate: a multifunctional X-ray-induced photochromic material. Chemical Science, 2014, 5, 4237-4241.	7.4	130
40	Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chemical Science, 2020, 11, 6670-6681.	7.4	130
41	Red Room-Temperature Phosphorescence of CDs@Zeolite Composites Triggered by Heteroatoms in Zeolite Frameworks. ACS Central Science, 2019, 5, 349-356.	11.3	128
42	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18443-18448.	13.8	125
43	Carbon Dotsâ€inâ€Matrix Boosting Intriguing Luminescence Properties and Applications. Small, 2019, 15, e1805504.	10.0	124
44	Impregnating Subnanometer Metallic Nanocatalysts into Self-Pillared Zeolite Nanosheets. Journal of the American Chemical Society, 2021, 143, 6905-6914.	13.7	124
45	Chiral zeolitic materials: structural insights and synthetic challenges. Journal of Materials Chemistry, 2008, 18, 4021.	6.7	122
46	Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance. Journal of Materials Chemistry A, 2015, 3, 19783-19789.	10.3	121
47	Synthesis of anatase-free nano-sized hierarchical TS-1 zeolites and their excellent catalytic performance in alkene epoxidation. Journal of Materials Chemistry A, 2018, 6, 9473-9479.	10.3	120
48	Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling. Nature, 2022, 601, 568-572.	27.8	120
49	Perovskite Quantum Dots Encapsulated in a Mesoporous Metal–Organic Framework as Synergistic Photocathode Materials. Journal of the American Chemical Society, 2021, 143, 14253-14260.	13.7	118
50	Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Physical Chemistry Chemical Physics, 2013, 15, 14670.	2.8	117
51	A novel (3,3,6)-connected luminescent metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 2013, 42, 5508.	3.3	115
52	Porous Materials Applied in Nonaqueous Li–O ₂ Batteries: Status and Perspectives. Advanced Materials, 2020, 32, e2002559.	21.0	115
53	Advances in Catalytic Applications of Zeoliteâ€Supported Metal Catalysts. Advanced Materials, 2021, 33, e2104442.	21.0	113
54	A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications, 2016, 52, 3368-3371.	4.1	109

#	Article	IF	CITATIONS
55	A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance. Chemical Communications, 2016, 52, 3580-3583.	4.1	108
56	Criteria for Zeolite Frameworks Realizable for Target Synthesis. Angewandte Chemie - International Edition, 2013, 52, 1673-1677.	13.8	107
57	Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. Journal of Materials Chemistry A, 2016, 4, 14978-14982.	10.3	107
58	A Bifunctional Photoâ€Assisted Li–O ₂ Battery Based on a Hierarchical Heterostructured Cathode. Advanced Materials, 2020, 32, e1907098.	21.0	105
59	Methyl viologen-templated zinc gallophosphate zeolitic material with dual photo-/thermochromism and tuneable photovoltaic activity. Chemical Science, 2015, 6, 2922-2927.	7.4	104
60	Conversion of methanol to olefins: Stabilization of nanosized SAPO-34 by hydrothermal treatment. Journal of Catalysis, 2015, 329, 379-388.	6.2	104
61	Flexible inorganic nanofibrous membranes with hierarchical porosity for efficient water purification. Chemical Science, 2013, 4, 4378.	7.4	103
62	In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. Journal of Materials Chemistry A, 2014, 2, 17994-18004.	10.3	102
63	Synthesis of hierarchical TS-1 zeolites with abundant and uniform intracrystalline mesopores and their highly efficient catalytic performance for oxidation desulfurization. Journal of Materials Chemistry A, 2017, 5, 7992-7998.	10.3	100
64	Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chemical Science, 2016, 7, 3564-3568.	7.4	99
65	Roselike Microstructures Formed by Direct In Situ Hydrothermal Synthesis:  From Superhydrophilicity to Superhydrophobicity. Chemistry of Materials, 2005, 17, 6177-6180.	6.7	97
66	Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction. Polymer Chemistry, 2013, 4, 1932.	3.9	97
67	A 4 + 4 strategy for synthesis of zeolitic metal–organic frameworks: an indium-MOF with SOD topology as a light-harvesting antenna. Chemical Communications, 2013, 49, 11155.	4.1	96
68	High performance nanosheet-like silicoaluminophosphate molecular sieves: synthesis, 3D EDT structural analysis and MTO catalytic studies. Journal of Materials Chemistry A, 2014, 2, 17828-17839.	10.3	96
69	High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies. Chemistry of Materials, 2018, 30, 2750-2758.	6.7	96
70	Cotemplating Ionothermal Synthesis of a New Open-Framework Aluminophosphate with Unique Al/P Ratio of 6/7. Chemistry of Materials, 2008, 20, 4179-4181.	6.7	94
71	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie - International Edition, 2020, 59, 19390-19402.	13.8	94
72	Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chemical Communications, 2013, 49, 9006.	4.1	93

Үи Јінолс

#	Article	IF	CITATIONS
73	Template-Modulated Afterglow of Carbon Dots in Zeolites: Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. , 2019, 1, 58-63.		92
74	Multifunctional open-framework zinc phosphate C12H14N2 [Zn6(PO4)4(HPO4)(H2O)2]: photochromic, photoelectric and fluorescent properties. Chemical Communications, 2013, 49, 4995.	4.1	91
75	Radical-Facilitated Green Synthesis of Highly Ordered Mesoporous Silica Materials. Journal of the American Chemical Society, 2018, 140, 4770-4773.	13.7	91
76	A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO ₆ species. Journal of Materials Chemistry A, 2020, 8, 9677-9683.	10.3	89
77	Fabrication of SAPO-34 Crystals with Different Morphologies by Microwave Heating. Topics in Catalysis, 2010, 53, 1304-1310.	2.8	88
78	Heteroatom‣tabilized Chiral Framework of Aluminophosphate Molecular Sieves. Angewandte Chemie - International Edition, 2009, 48, 314-317.	13.8	87
79	A top-down approach to hierarchical SAPO-34 zeolites with improved selectivity of olefin. Microporous and Mesoporous Materials, 2016, 234, 401-408.	4.4	86
80	Fine Structures of Zeolite-Linde-L (LTL): Surface Structures, Growth Unit and Defects. Chemistry - A European Journal, 2004, 10, 5031-5040.	3.3	84
81	Fabrication of Hierarchically Porous Inorganic Nanofibers by a General Microemulsion Electrospinning Approach. Small, 2011, 7, 1779-1783.	10.0	84
82	AlEgensâ€Functionalized Inorganicâ€Organic Hybrid Materials: Fabrications and Applications. Small, 2016, 12, 6478-6494.	10.0	83
83	Amino-Functionalized Porous Nanofibrous Membranes for Simultaneous Removal of Oil and Heavy-Metal Ions from Wastewater. ACS Applied Materials & Interfaces, 2019, 11, 1672-1679.	8.0	83
84	A Crystalline Germanate with Mesoporous 30-Ring Channels. Journal of the American Chemical Society, 2009, 131, 14128-14129.	13.7	80
85	Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 2016, 52, 6072-6075.	4.1	80
86	Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 7454-7459.	2.0	80
87	Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance. Chemical Communications, 2015, 51, 16397-16400.	4.1	78
88	Fabrication of Zeolite Hollow Fibers by Coaxial Electrospinning. Chemistry of Materials, 2008, 20, 3543-3545.	6.7	77
89	Intermediate-crystallization promoted catalytic activity of titanosilicate zeolites. Journal of Materials Chemistry A, 2018, 6, 8757-8762.	10.3	77
90	Structures and Templating Effect in the Formation of 2D Layered Aluminophosphates with Al3P4O163-Stoichiometry. Chemistry of Materials, 1999, 11, 2600-2606.	6.7	76

#	Article	IF	CITATIONS
91	A Green Selective Water-Etching Approach to MOF@Mesoporous SiO2 Yolk-Shell Nanoreactors with Enhanced Catalytic Stabilities. Matter, 2020, 3, 498-508.	10.0	75
92	Supramolecular Nanosystem Based on Pillararene-Capped CuS Nanoparticles for Targeted Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 29314-29324.	8.0	74
93	Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous and Mesoporous Materials, 2011, 146, 216-222.	4.4	70
94	Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation. Advanced Science, 2019, 6, 1802350.	11.2	70
95	Creation of Alâ€Enriched Mesoporous ZSMâ€5 Nanoboxes with High Catalytic Activity: Converting Tetrahedral Extraâ€Framework Al into Framework Sites by Post Treatment. Angewandte Chemie - International Edition, 2020, 59, 19478-19486.	13.8	69
96	A one-pot synthetic strategy via tandem Suzuki–Heck reactions for the construction of luminescent microporous organic polymers. Polymer Chemistry, 2014, 5, 471-478.	3.9	67
97	AlEgen-Functionalized Mesoporous Silica Gated by Cyclodextrin-Modified CuS for Cell Imaging and Chemo-Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 12155-12163.	8.0	67
98	Polyoxomolybdic Cobalt Encapsulated within Zr-Based Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Olefins Epoxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 3624-3631.	6.7	67
99	A Germanate Built from a 6 ⁸ 12 ⁶ Cavity Cotemplated by an (H ₂ O) ₁₆ Cluster and 2â€Methylpiperazine. Angewandte Chemie - International Edition, 2008, 47, 7868-7871.	13.8	66
100	Mesoporous silica functionalized with an AIE luminogen for drug delivery. Chemical Communications, 2011, 47, 11077.	4.1	64
101	Ionothermal Synthesis of Extraâ€Largeâ€Pore Openâ€Framework Nickel Phosphite 5 H ₃ Oâ<[Ni ₈ (HPO ₃) ₉ Cl ₃]â<1.5 H Magnetic Anisotropy of the Antiferromagnetism. Angewandte Chemie - International Edition, 2010, 49, 2328-2331.	_{2<td>ubzO:</td>}	ubzO:
102	In silico prediction and screening of modular crystal structures via a high-throughput genomic approach. Nature Communications, 2015, 6, 8328.	12.8	63
103	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19669-19674.	13.8	63
104	Coupling of chromophores with exactly opposite luminescence behaviours in mesostructured organosilicas for high-efficiency multicolour emission. Chemical Science, 2015, 6, 6097-6101.	7.4	62
105	Fabrication of superhydrophilic Cu2O and CuO membranes. Journal of Membrane Science, 2006, 286, 279-284.	8.2	61
106	Template-Designed Syntheses of Open-Framework Zinc Phosphites with Extra-Large 24-Ring Channels. Crystal Growth and Design, 2008, 8, 2318-2323.	3.0	61
107	Fabricating Mechanically Robust Binderâ€Free Structured Zeolites by 3D Printing Coupled with Zeolite Soldering: A Superior Configuration for CO ₂ Capture. Advanced Science, 2019, 6, 1901317.	11.2	61
108	Flexible Multifunctional Porous Nanofibrous Membranes for High-Efficiency Air Filtration. ACS Applied Materials & Interfaces, 2019, 11, 43409-43415.	8.0	60

#	Article	IF	CITATIONS
109	2H3O·[Co8(HPO3)9(CH3OH)3]·2H2O: An Open-Framework Cobalt Phosphite Containing Extra-Large 18-Ring Channels. Chemistry of Materials, 2008, 20, 17-19.	6.7	57
110	The recyclable synthesis of hierarchical zeolite SAPO-34 with excellent MTO catalytic performance. Chemical Communications, 2015, 51, 11987-11989.	4.1	57
111	Design and synthesis of a multifunctional porous N-rich polymer containing <i>s</i> -triazine and Tröger's base for CO ₂ adsorption, catalysis and sensing. Polymer Chemistry, 2018, 9, 2643-2649.	3.9	57
112	Zeolite-confined carbon dots: tuning thermally activated delayed fluorescence emission <i>via</i> energy transfer. Materials Chemistry Frontiers, 2020, 4, 1404-1410.	5.9	57
113	Solid-State NMR Spectroscopy of Anionic Framework Aluminophosphates:Â A New Method to Determine the Al/P Ratio. Journal of Physical Chemistry B, 2006, 110, 2131-2137.	2.6	56
114	[Ni(1,2-PDA) ₃] ₂ (HOCH ₂ CH ₂ CH ₂ CH ₂ NH _{3[Ge₇O₁₄X₃]₃(<i>X</i> = F, OH): A New 1D Germanate with 12-Ring Hexagonal Tubular Channels. Chemistry of Materials, 2008, 20, 370-372.}	ıb>) _{ 6.7}	3(H< 56
115	Toward a New Era of Designed Synthesis of Nanoporous Zeolitic Materials. ACS Nano, 2018, 12, 4096-4104.	14.6	56
116	Advanced Hybrid Electrolyte Li-O2 Battery Realized by Dual Superlyophobic Membrane. Joule, 2019, 3, 2986-3001.	24.0	56
117	High proton conduction in a new alkali metal-templated open-framework aluminophosphate. Chemical Communications, 2015, 51, 9317-9319.	4.1	54
118	Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance. Chemical Communications, 2018, 54, 3697-3700.	4.1	54
119	An Extraâ€Largeâ€Pore Zeolite with 24×8×8â€Ring Channels Using a Structureâ€Directing Agent Derived fror Traditional Chinese Medicine. Angewandte Chemie - International Edition, 2018, 57, 6486-6490.	n 13.8	54
120	Investigation of Extra-Large Pore Zeolite Synthesis by a High-Throughput Approach. Chemistry of Materials, 2011, 23, 4709-4715.	6.7	53
121	Hydrothermal synthesis and characterization of a new inorganic–organic hybrid layered zinc phosphate–phosphite (C6H15N2)2Zn4(PO4)2(HPO3)2. Dalton Transactions RSC, 2002, , 4060-4063.	2.3	52
122	AIE cation functionalized layered zirconium phosphate nanoplatelets: ion-exchange intercalation and cell imaging. Chemical Communications, 2013, 49, 9549.	4.1	52
123	Design of Chiral Zeolite Frameworks with Specified Channels through Constrained Assembly of Atoms. Chemistry of Materials, 2005, 17, 4399-4405.	6.7	51
124	Octavinylsilsesquioxane-based luminescent nanoporous inorganic–organic hybrid polymers constructed by the Heck coupling reaction. Polymer Chemistry, 2015, 6, 917-924.	3.9	51
125	CO ₂ adsorption and catalytic application of imidazole ionic liquid functionalized porous organic polymers. Polymer Chemistry, 2017, 8, 1833-1839.	3.9	51
126	Unveiling Secondary-Ion-Promoted Catalytic Properties of Cu-SSZ-13 Zeolites for Selective Catalytic Reduction of NO <i>_x</i> . Journal of the American Chemical Society, 2022, 144, 12816-12824.	13.7	51

#	Article	IF	CITATIONS
127	Carbon Dots-in-Zeolite via In-Situ Solvent-Free Thermal Crystallization: Achieving High-Efficiency and Ultralong Afterglow Dual Emission. CCS Chemistry, 2020, 2, 118-127.	7.8	50
128	Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth. Journal of Materials Chemistry B, 2018, 6, 3254-3261.	5.8	48
129	AlE Luminogenâ€Functionalized Hollow Mesoporous Silica Nanospheres for Drug Delivery and Cell Imaging. Chemistry - A European Journal, 2016, 22, 3681-3685.	3.3	47
130	Organicâ€Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post‧ynthesis Treatment. Angewandte Chemie - International Edition, 2020, 59, 17225-17228.	13.8	47
131	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, 19618-19627.	2.0	47
132	Carbon Dotsâ€inâ€EuAPOâ€5 Zeolite: Tripleâ€Emission for Multilevel Luminescence Antiâ€Counterfeiting. Small, 2021, 17, e2103374.	10.0	47
133	Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites. Chemistry of Materials, 2016, 28, 6455-6458.	6.7	46
134	Nanoseed-assisted synthesis of nano-sized SAPO-34 zeolites using morpholine as the sole template with superior MTO performance. Chemical Communications, 2017, 53, 13328-13331.	4.1	46
135	Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing. ACS Biomaterials Science and Engineering, 2020, 6, 5181-5190.	5.2	45
136	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18224-18228.	13.8	44
137	Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route. Scientific Reports, 2015, 5, 11521.	3.3	43
138	An amino acid-assisted approach to fabricate nanosized hierarchical TS-1 zeolites for efficient oxidative desulfurization. Inorganic Chemistry Frontiers, 2020, 7, 1975-1980.	6.0	42
139	Design and Synthesis of Two Porous Metal–Organic Frameworks with <i>nbo</i> and <i>agw</i> Topologies Showing High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 10720-10722.	4.0	41
140	Three-Dimensional-Printed Core–Shell Structured MFI-Type Zeolite Monoliths for Volatile Organic Compound Capture under Humid Conditions. ACS Applied Materials & Interfaces, 2019, 11, 38955-38963.	8.0	41
141	Low-energy adsorptive separation by zeolites. National Science Review, 2022, 9, .	9.5	41
142	A Gallogermanate Zeolite with Elevenâ€Memberedâ€Ring Channels. Angewandte Chemie - International Edition, 2013, 52, 5501-5503.	13.8	40
143	AIE luminogen-functionalised mesoporous nanomaterials for efficient detection of volatile gases. Chemical Communications, 2015, 51, 13830-13833.	4.1	40
144	Mesoporogenâ€Free Synthesis of Hierarchical SAPOâ€34 with Low Template Consumption and Excellent Methanolâ€toâ€Olefin Conversion. ChemSusChem, 2018, 11, 3812-3820.	6.8	40

#	Article	IF	CITATIONS
145	Controlling the Morphology and Titanium Coordination States of TS-1 Zeolites by Crystal Growth Modifier. Inorganic Chemistry, 2020, 59, 13201-13210.	4.0	40
146	Fabrication of super-hydrophobic and super-oleophilic boehmite membranes from anodic alumina oxide film via a two-phase thermal approach. Journal of Materials Chemistry, 2006, 16, 1741.	6.7	39
147	Fluorescent sensors based on AIEgen-functionalised mesoporous silica nanoparticles for the detection of explosives and antibiotics. Inorganic Chemistry Frontiers, 2018, 5, 2183-2188.	6.0	39
148	Organotemplate-free synthesis of an open-framework magnesium aluminophosphate with proton conduction properties. Chemical Communications, 2015, 51, 2149-2151.	4.1	38
149	A Metal-Rich Fluorinated Indium Phosphate, 4[NH3(CH2)3NH3]·3[H3O]·[In9(PO4)6(HPO4)2F16]·3H2O, with 14-Membered Ring Channels. Chemistry of Materials, 1998, 10, 773-776.	6.7	37
150	A novel open-framework aluminophosphate [AlP2O6(OH)2][H3O] containing propeller-like chiral motifs. Chemical Communications, 2000, , 1431-1432.	4.1	37
151	Towards Rational Synthesis of Microporous Aluminophosphate AlPO4-21 by Hydrothermal Combinatorial Approach. Topics in Catalysis, 2005, 35, 3-8.	2.8	37
152	Na2[VB3P2O12(OH)]·2.92H2O: A New Open-Framework Vanadium Borophosphate Containing Extra-Large 16-Ring Pore Openings and 128166 Super Cavities Synthesized by Using the Boric Acid Flux Method. Chemistry of Materials, 2008, 20, 4900-4905.	6.7	37
153	Morphology Changes of Transition-Metal-Substituted Aluminophosphate Molecular Sieve AlPO4-5 Crystals. Chemistry of Materials, 2008, 20, 2160-2164.	6.7	37
154	Fabrication of molecular sieve fibers by electrospinning. Journal of Materials Chemistry, 2011, 21, 8511.	6.7	37
155	AIE luminogen bridged hollow hydroxyapatite nanocapsules for drug delivery. Dalton Transactions, 2013, 42, 9877.	3.3	37
156	Assembly of one-dimensional AlP2O83â^'chains into three-dimensional MAlP2O8·C2N2H9frameworks through transition metal cations (M = Ni2+, Co2+and Fe2+). Dalton Transactions, 2003, , 99-103.	3.3	36
157	Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials, 2007, 104, 296-304.	4.4	36
158	Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry, 2019, 21, 839-849.	9.0	36
159	Multifunctional porous Tröger's base polymers with tetraphenylethene units: CO ₂ adsorption, luminescence and sensing properties. Polymer Chemistry, 2017, 8, 4842-4848.	3.9	35
160	Breaking the Si/Al Limit of Nanosized β Zeolites: Promoting Catalytic Production of Lactide. Chemistry of Materials, 2020, 32, 751-758.	6.7	35
161	Temperature-regulated construction of hierarchical titanosilicate zeolites. Inorganic Chemistry Frontiers, 2020, 7, 1872-1879.	6.0	35
162	Divalent-Metal-Stabilized Aluminophosphates Exhibiting a New Zeolite Framework Topology. Inorganic Chemistry, 2012, 51, 225-229.	4.0	34

#	Article	IF	CITATIONS
163	Lifetime-Engineered Phosphorescent Carbon Dots-in-Zeolite Composites for Naked-Eye Visible Multiplexing. CCS Chemistry, 2021, 3, 252-264.	7.8	34
164	Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials, 2009, 119, 217-222.	4.4	33
165	Progress in heteroatom-containing aluminophosphate molecular sieves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1955-1967.	2.1	33
166	An efficient synthetic route to accelerate zeolite synthesis <i>via</i> radicals. Inorganic Chemistry Frontiers, 2018, 5, 2106-2110.	6.0	33
167	Creation of Hierarchical Titanosilicate TSâ€l Zeolites. Advanced Materials Interfaces, 2021, 8, 2001095.	3.7	33
168	Dehydrogenation of propane marches on. Matter, 2021, 4, 2642-2644.	10.0	33
169	Confinement Effect of Zeolite Cavities on Methanol-to-Olefin Conversion: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118, 24935-24940.	3.1	32
170	The inorganic cation-tailored "trapdoor―effect of silicoaluminophosphate zeolite for highly selective CO ₂ separation. Chemical Science, 2021, 12, 8803-8810.	7.4	32
171	Under-liquid dual superlyophobic nanofibrous polymer membranes achieved by coating thin-film composites: a design principle. Chemical Science, 2019, 10, 6382-6389.	7.4	31
172	Chiral Layered Zincophosphate [d-Co(en)3]Zn3(H0.5PO4)2(HPO4)2 Assembled about d-Co(en)33+ Complex Cations. Inorganic Chemistry, 2006, 45, 4764-4768.	4.0	30
173	AIE luminogen functionalized mesoporous silica nanoparticles as efficient fluorescent sensor for explosives detection in water. Microporous and Mesoporous Materials, 2014, 196, 46-50.	4.4	30
174	Enhancing CO2 Adsorption and Separation Properties of Aluminophosphate Zeolites by Isomorphous Heteroatom Substitutions. ACS Applied Materials & Interfaces, 2018, 10, 43570-43577.	8.0	30
175	Efficient post-synthesis of hierarchical SAPO-34 zeolites <i>via</i> organic amine etching under hydrothermal conditions and their enhanced MTO performance. Inorganic Chemistry Frontiers, 2019, 6, 1299-1303.	6.0	30
176	A Layered Cationic Aluminum Oxyhydroxide as a Highly Efficient and Selective Trap for Heavy Metal Oxyanions. Angewandte Chemie - International Edition, 2020, 59, 19539-19544.	13.8	30
177	Titanosilicate zeolite precursors for highly efficient oxidation reactions. Chemical Science, 2020, 11, 12341-12349.	7.4	29
178	A new layered aluminophosphate [C4H12N2][Al2P2O8(OH)2] templated by piperazine. Journal of Materials Chemistry, 2001, 11, 1898-1902.	6.7	28
179	Direct Atomicâ€Level Imaging of Zeolites: Oxygen, Sodium in Naâ€LTA and Iron in Feâ€MFI. Angewandte Chemie - International Edition, 2020, 59, 19510-19517.	13.8	28
180	Spatially Separated Bifunctional Cocatalysts Decorated on Hollow-Structured TiO ₂ for Enhanced Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2020, 12, 23356-23362.	8.0	28

#	Article	IF	CITATIONS
181	Amino acid-assisted synthesis of TS-1 zeolites containing highly catalytically active TiO6 species. Chinese Journal of Catalysis, 2021, 42, 2189-2196.	14.0	27
182	Synthesis and characterization of a new three-dimensional aluminophosphate [Al11P12O48][C4H12N2][C4H11N2] with an Al/P ratio of 11â€â^¶â€12. Dalton Transactions RSC, 2001, , 18	0 9 -1812.	26
183	Fabrication and Catalytic Performance of Highly Stable Multifunctional Core–Shell Zeolite Composites. Inorganic Chemistry, 2013, 52, 10708-10710.	4.0	26
184	Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie, 2019, 131, 18743-18749.	2.0	26
185	Superhydrophobic magnetic core–shell mesoporous organosilica nanoparticles with dendritic architecture for oil–water separation. Materials Chemistry Frontiers, 2020, 4, 2184-2191.	5.9	26
186	Organotemplate-free hydrothermal synthesis of an aluminophosphate molecular sieve with AEN zeotype topology and properties of its derivatives. Chemical Communications, 2014, 50, 15400-15403.	4.1	25
187	A new two-dimensional layered germanate with <i>in situ</i> embedded carbon dots for optical temperature sensing. Inorganic Chemistry Frontiers, 2018, 5, 139-144.	6.0	25
188	Combining Structure Modeling and Electron Microscopy to Determine Complex Zeolite Framework Structures. Angewandte Chemie - International Edition, 2008, 47, 4401-4405.	13.8	24
189	Spontaneous crystallization of a new chiral open-framework borophosphate in the ionothermal system. Dalton Transactions, 2010, 39, 1713.	3.3	24
190	Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy and Environment, 2020, 5, 405-413.	8.7	24
191	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie, 2019, 131, 18614-18619.	2.0	23
192	(NH4)6[Mn3B6P9O36(OH)3]·4H2O: A new open-framework manganese borophosphate synthesized by using boric acid flux method. Dalton Transactions, 2011, 40, 2549.	3.3	22
193	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie, 2020, 132, 20358-20366.	2.0	22
194	Electron Beam Irradiationâ€Induced Formation of Defectâ€Rich Zeolites under Ambient Condition within Minutes. Angewandte Chemie - International Edition, 2021, 60, 14858-14863.	13.8	22
195	Computational prediction of the formation of microporous aluminophosphates with desired structural features. Microporous and Mesoporous Materials, 2010, 129, 251-255.	4.4	21
196	Surfactant-assisted sol–gel synthesis of zirconia supported phosphotungstates or Ti-substituted phosphotungstates for catalytic oxidation of cyclohexene. Applied Catalysis A: General, 2014, 482, 84-91.	4.3	21
197	Side-chain alkylation of toluene with methanol over boron phosphate modified cesium ion-exchanged zeolite X catalysts. Journal of Porous Materials, 2015, 22, 1179-1186.	2.6	21
198	Porous Membranes with Special Wettabilities: Designed Fabrication and Emerging Application. CCS Chemistry, 2021, 3, 2280-2297.	7.8	21

#	Article	IF	CITATIONS
199	Polarityâ€Dominated Stable N97 Respirators for Airborne Virus Capture Based on Nanofibrous Membranes. Angewandte Chemie - International Edition, 2021, 60, 23756-23762.	13.8	21
200	Construction of Singleâ€Crystalline Hierarchical ZSMâ€5 with Open Nanoarchitectures via Anisotropicâ€Kinetics Transformation for the Methanolâ€toâ€Hydrocarbons Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
201	Na2.4CeSi6O15·2.6H2O: Hydrothermal synthesis, characterization and properties of a new luminescent microporous cerium silicate. Microporous and Mesoporous Materials, 2007, 105, 58-64.	4.4	20
202	FraGen: a computer program for real-space structure solution of extended inorganic frameworks. Journal of Applied Crystallography, 2012, 45, 855-861.	4.5	20
203	ZSM-5 zeolites with different SiO2/Al2O3 ratios as fluid catalytic cracking catalyst additives for residue cracking. Chinese Journal of Catalysis, 2015, 36, 806-812.	14.0	20
204	Fluoride etching opens access for bulky molecules to active sites in microporous Ti-beta zeolite. Materials Chemistry Frontiers, 2020, 4, 2982-2989.	5.9	20
205	Anionic Tuning of Zeolite Crystallization. CCS Chemistry, 2021, 3, 189-198.	7.8	20
206	(C6H10N3O2)Zn2(HPO4)(PO4)·H2O: An inorganic network with biofunctional amino acid dl-histidine molecules. CrystEngComm, 2008, 10, 497.	2.6	19
207	Syntheses and Characterizations of Transition-Metal-Substituted Aluminophosphate Molecular Sieves (C ₃ N ₂ H ₅) ₈ [M ₈ Al ₁₆ P _{24 (M = Co, Mn, Zn) with Zeotype LAU Topology. Inorganic Chemistry, 2009, 48, 198-203.}	<\ ഷp >O<	su b 996
208	AlEgen-functionalised mesoporous silica nanoparticles as a FRET donor for monitoring drug delivery. Inorganic Chemistry Frontiers, 2017, 4, 468-472.	6.0	19
209	Necessity of Heteroatoms for Realizing Hypothetical Aluminophosphate Zeolites: A High-Throughput Computational Approach. Journal of Physical Chemistry Letters, 2019, 10, 1411-1415.	4.6	19
210	Functional Porous Materials Chemistry. Advanced Materials, 2020, 32, e2006277.	21.0	19
211	Spatially separated bimetallic cocatalysts on hollow-structured TiO ₂ for photocatalytic hydrogen generation. Materials Chemistry Frontiers, 2020, 4, 1671-1678.	5.9	19
212	Ligninâ€First Monomers to Catechol: Rational Cleavage of Câ^'O and Câ^'C Bonds over Zeolites. ChemSusChem, 2022, 15, .	6.8	19
213	Syntheses and Characterizations of Three Low-Dimensional Chloride-Rich Zincophosphates Assembled about [<i>d</i> -Co(en) ₃] ³⁺ and [<i>d </i> -Co(en) ₃] ³⁺ Complex Cations. Inorganic Chemistry, 2007, 46, 6683-6687.	4.0	18
214	Molecular engineering of microporous crystals: (VII) The molar ratio dependence of the structure-directing ability of piperazine in the crystallization of four aluminophosphates with open-frameworks. Microporous and Mesoporous Materials, 2013, 176, 112-122.	4.4	18
215	A dual-template method for the synthesis of bimetallic CuNi/SSZ-13 zeolite catalysts for NH3-SCR reaction. Inorganic Chemistry Communication, 2019, 105, 203-207.	3.9	18
216	Enhanced Performance for Selective Catalytic Reduction of NO _x with NH ₃ over Nanosized Cu/SAPOâ€34 Catalysts. ChemCatChem, 2019, 11, 3865-3870.	3.7	18

#	Article	IF	CITATIONS
217	Oriented Crystallization of KH2PO4under a Compressed Langmuir Monolayer. Langmuir, 1999, 15, 4837-4841.	3.5	17
218	Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic–lipophilic balance. Chemical Science, 2021, 12, 6136-6142.	7.4	17
219	Synthesis, structure and magnetic property of a new organo-templated mixed-valent iron(ii, iii) borophosphate. Journal of Materials Chemistry, 2009, 19, 4523.	6.7	16
220	NaEu ₃ (GeO ₄) ₂ (OH) ₂ : A Highâ€Pressureâ€Stable Photoluminescent Lanthanide Germanate. European Journal of Inorganic Chemistry, 2012, 2012, 2527-2532.	2.0	16
221	A new layered aluminophosphate [Al2P4O16][C6H22N4][C2H10N2] with 4.12-net porous sheets. Dalton Transactions RSC, 2000, , 1979-1980.	2.3	15
222	Syntheses and Structures of Two Low-Dimensional Beryllium Phosphate Compounds: [C5H14N2]2[Be3(HPO4)5]·H2O and [C6H18N2]0.5[Be2(PO4)(HPO4)OH]À·0.5H2O. Inorganic Chemistry, 2006 45, 3281-3286.	6,4.0	15
223	Database of open-framework aluminophosphate syntheses: introduction and application (I). Science in China Series B: Chemistry, 2009, 52, 1734-1738.	0.8	15
224	AlE luminogen-functionalised mesoporous silica nanoparticles as nanotheranostic agents for imaging guided synergetic chemo-/photothermal therapy. Inorganic Chemistry Frontiers, 2017, 4, 833-839.	6.0	15
225	Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy and Environment, 2023, 8, 163-172.	8.7	15
226	Protozeolite‧eeded Synthesis of Single rystalline Hierarchical Zeolites with Facet‧haped Mesopores and Their Catalytic Application in Methanolâ€ŧoâ€Propylene Conversion. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
227	Synthesis, Structure, and Photoluminescence Property of a New Layered Zirconium Phosphate Co(dien)2 [Zr4H8P5O26]·3H2O. Inorganic Chemistry, 2007, 46, 5847-5851.	4.0	14
228	Direct in situ crystallization of highly oriented silicalite-1 thin films on a surface sol–gel process modified substrate. Microporous and Mesoporous Materials, 2011, 145, 104-107.	4.4	14
229	"Caging―Anions through Crystal Engineering to Avoid Polymerization: Structural, Conformational and Theoretical Investigations of New Halocadmate [Cd2X7]3- Anions (X = Cl/Br). European Journal of Inorganic Chemistry, 2012, 2012, 1195-1203.	2.0	14
230	Hydrothermal synthesis of an ITH-type germanosilicate zeolite in a non-concentrated gel system. Journal of Porous Materials, 2013, 20, 975-981.	2.6	14
231	Roles of Hydroxyl Groups During Sideâ€Chain Alkylation of Toluene with Methanol over Zeolite Naâ€Y: A Density Functional Theory Study. Chinese Journal of Chemistry, 2017, 35, 716-722.	4.9	14
232	Antibacterial activity of Ag-incorporated zincosilicate zeolite scaffolds fabricated by additive manufacturing. Inorganic Chemistry Communication, 2019, 105, 31-35.	3.9	14
233	Organicâ€Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Postâ€Synthesis Treatment. Angewandte Chemie, 2020, 132, 17378-17381.	2.0	14
234	Electron Microscopy Studies of Local Structural Modulations in Zeolite Crystals. Angewandte Chemie - International Edition, 2020, 59, 19403-19413.	13.8	14

#	Article	IF	CITATIONS
235	Database of open-framework aluminophosphate structures. Scientific Data, 2020, 7, 107.	5.3	14
236	Enhancing catalytic performance of Cu-SSZ-13 for the NH ₃ -SCR reaction <i>via in situ</i> introduction of Fe ³⁺ with diatomite. Materials Chemistry Frontiers, 2021, 5, 7787-7795.	5.9	14
237	One-Pot Three-Dimensional Printing Robust Self-Supporting MnO _x /Cu-SSZ-13 Zeolite Monolithic Catalysts for NH ₃ -SCR. CCS Chemistry, 2022, 4, 1708-1719.	7.8	14
238	Achieving highly selective CO ₂ adsorption on SAPO-35 zeolites by template-modulating the framework silicon content. Chemical Science, 2022, 13, 5687-5692.	7.4	14
239	Covalent Bonding of Phosphonates ofL-Proline andL-Cysteine toÎ ³ -Zirconium Phosphate. European Journal of Inorganic Chemistry, 2004, 2004, 2956-2960.	2.0	13
240	Na8CeSi6O18and Its Ti-Doped Analogue Na8Ce0.73Ti0.27Si6O18with Interesting Photovoltaic Properties. Chemistry of Materials, 2011, 23, 2842-2847.	6.7	13
241	Four-connected metal–organic frameworks constructed by tetracarboxylate acid-based ligands. Inorganic Chemistry Frontiers, 2014, 1, 478.	6.0	13
242	Layered Inorganic Cationic Frameworks beyond Layered Double Hydroxides (LDHs): Structures and Applications. European Journal of Inorganic Chemistry, 2020, 2020, 4055-4063.	2.0	13
243	Covalent Immobilization of Naringinase over Twoâ€Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices. ChemCatChem, 2020, 12, 4502-4511.	3.7	13
244	Screening out unfeasible hypothetical zeolite structures via the closest non-adjacent Oâ‹⁻O pairs. Physical Chemistry Chemical Physics, 2017, 19, 1276-1280.	2.8	12
245	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie, 2020, 132, 19558-19570.	2.0	12
246	Creation of Alâ€Enriched Mesoporous ZSMâ€5 Nanoboxes with High Catalytic Activity: Converting Tetrahedral Extraâ€Framework Al into Framework Sites by Post Treatment. Angewandte Chemie, 2020, 132, 19646-19654.	2.0	12
247	Influence of Al3+ on polymorph A enrichment in the crystallization of beta zeolite. Chinese Journal of Catalysis, 2015, 36, 889-896.	14.0	11
248	Probing the Design Rationale of a Highâ€Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity. Angewandte Chemie - International Edition, 2020, 59, 19561-19569.	13.8	11
249	A unique self-assembled (H2O)16 water cluster in an inorganic crystal host. Physical Chemistry Chemical Physics, 2009, 11, 1291.	2.8	10
250	K ₃ [Tb _{<i>x</i>} Eu _{1–<i>x</i>} Ge ₃ O ₈ (OH) _{ (<i>x</i> = 1, 0.88, 0.67, 0): 2D-Layered Lanthanide Germanates with Tunable Photoluminescent Properties. Inorganic Chemistry, 2012, 51, 4779-4783.}	2] 4.0	10
251	The structure-directing effect of n-propylamine in the crystallization of open-framework aluminophosphates. Science China Chemistry, 2014, 57, 127-134.	8.2	10
252	Genetic engineering of inorganic functional modular materials. Chemical Science, 2016, 7, 3472-3481.	7.4	10

#	Article	IF	CITATIONS
253	Steam-assisted crystallization of highly dispersed nanosized hierarchical zeolites from solid raw materials and their catalytic performance in lactide production. Chemical Science, 2022, 13, 8052-8059.	7.4	10
254	A Stacking Faults-Containing Silicogermanate with 24-Ring Channels and Unbranched Zweier Silica Double Chains. Crystal Growth and Design, 2012, 12, 3714-3719.	3.0	9
255	Germanate with Three-Dimensional 12 × 12 × 11-Ring Channels Solved by X-ray Powder Diffraction with Charge-Flipping Algorithm. Inorganic Chemistry, 2013, 52, 10238-10244.	4.0	9
256	Ionothermal synthesis and magnetic study of a new manganese(<scp>ii</scp>) phosphite with an unprecedented Mn/P ratio. Inorganic Chemistry Frontiers, 2016, 3, 924-927.	6.0	9
257	Synthesis and Pressureâ€induced Reversible Phase Transition of a Crystalline Solid Europium Germanate NaEuGeO ₄ . Chinese Journal of Chemistry, 2012, 30, 2066-2072.	4.9	8
258	Biodegradable AIEgen-functionalised mesoporous bioactive glass nanoparticles for drug delivery and cell imaging. Inorganic Chemistry Frontiers, 2018, 5, 474-480.	6.0	8
259	Structure stabilization of zeolite Y induced by yttrium and its role in promoting n-docosane conversion. Microporous and Mesoporous Materials, 2021, 323, 111225.	4.4	8
260	Coreâ^'Shell Composite of Ti-/Cr-AFI Molecular Sieve via Solvothermal Epitaxial Growth. Crystal Growth and Design, 2009, 9, 1411-1414.	3.0	7
261	Synthesis, characterization and properties of microporous lanthanide silicates: K8Ln3Si12O32NO3·H2O (Ln=Eu, Tb, Gd, Sm). Solid State Sciences, 2010, 12, 422-427.	3.2	7
262	Photochemical switching behavior of azo-functionalized mesoporous silica photonic crystals. Microporous and Mesoporous Materials, 2013, 168, 121-125.	4.4	7
263	Layerâ€byâ€Layer Approach to Superhydrophobic Zeolite Antireflective Coatings. Chinese Journal of Chemistry, 2018, 36, 51-54.	4.9	7
264	Vanadium contamination on the stability of zeolite USY and efficient passivation by La2O3 for cracking of residue oil. Microporous and Mesoporous Materials, 2019, 279, 345-351.	4.4	7
265	Structure Solution and Defect Analysis of an Extra-Large Pore Zeolite with UTL Topology by Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 3350-3356.	4.6	7
266	Esterification of Oleic Acid to Produce Biodiesel over 12-Tungstophosphoric Acid Anchored Two-dimensional Zeolite. Chemical Research in Chinese Universities, 2021, 37, 1072-1078.	2.6	7
267	Mesoporogen-free synthesis of single-crystalline hierarchical beta zeolites for efficient catalytic reactions. Inorganic Chemistry Frontiers, 2022, 9, 2470-2478.	6.0	7
268	A New 3-D Open-Framework Zinc Phosphate [C6H16N2]·[Zn2(HPO4)3] Synthesized by a Solvothermal Combinatorial Approach. European Journal of Inorganic Chemistry, 2004, 2004, 3718.	2.0	6
269	Syntheses and characterizations of heteroatom-containing open-framework aluminophosphates. Dalton Transactions, 2011, 40, 9289.	3.3	6
270	A chiral open-framework fluoroaluminophosphate with enantiomeric excess in the bulk product. Chemical Communications, 2013, 49, 11287.	4.1	6

#	Article	IF	CITATIONS
271	Entropy-driven self-assembly of chiral nematic liquid crystalline phases of AgNR@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition. Nano Research, 2018, 11, 1018-1028.	10.4	6
272	Identifying a Membrane-Type 2 Matrix Metalloproteinase-Targeting Peptide for Human Lung Cancer Detection and Targeting Chemotherapy with Functionalized Mesoporous Silica. ACS Applied Bio Materials, 2019, 2, 397-405.	4.6	6
273	Anion-promoted increase of the SiO2/Al2O3 ratio of zeolites. Inorganic Chemistry Frontiers, 0, , .	6.0	6
274	Mesoporogen-free synthesis of nanosized hierarchical ITQ-21 zeolites. Inorganic Chemistry Frontiers, 2019, 6, 1184-1188.	6.0	5
275	Frontispiece: Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, .	13.8	5
276	Polarityâ€Dominated Stable N97 Respirators for Airborne Virus Capture Based on Nanofibrous Membranes. Angewandte Chemie, 2021, 133, 23949-23955.	2.0	5
277	A Germanate Compound Constructed from Dissymmetric Ge ₇ Chains and Metal Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1345-1350.	1.2	4
278	Syntheses and characterizations of aluminophosphate molecular sieves AFI guided by missing value estimation on database of aluminophosphate syntheses. Microporous and Mesoporous Materials, 2013, 174, 14-19.	4.4	4
279	Interrupted silicogermanate with 10-ring channels: synthesis and structure determination by combining rotation electron diffraction and powder X-ray diffraction. Inorganic Chemistry Frontiers, 2017, 4, 1654-1659.	6.0	4
280	Tailoring Porosity and Titanium Species of TS-1 Zeolites via Organic Base-assisted Sequential Post-treatment. Chemical Research in Chinese Universities, 2022, 38, 50-57.	2.6	4
281	Unraveling templated-regulated distribution of isolated SiO4 tetrahedra in silicoaluminophosphate zeolites with high-throughput computations. National Science Review, 2022, 9, .	9.5	4
282	A Zinc Phosphate Structure with Unusual Double‣heet Layers Templated by a Cobalt Hexaammine Complex. European Journal of Inorganic Chemistry, 2012, 2012, 36-39.	2.0	3
283	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, 19837-19842.	2.0	3
284	A Layered Cationic Aluminum Oxyhydroxide as a Highly Efficient and Selective Trap for Heavy Metal Oxyanions. Angewandte Chemie, 2020, 132, 19707-19712.	2.0	3
285	Electron Microscopy Studies of Local Structural Modulations in Zeolite Crystals. Angewandte Chemie, 2020, 132, 19571-19581.	2.0	3
286	[Cu(en)2]0.5[Al3P3O12(OH)]-aluminophosphate with zeotype AWO: Synthesis, crystal structure and phase transformation. Science China Chemistry, 2010, 53, 2159-2163.	8.2	2
287	Reprint of: "AIE luminogen functionalized mesoporous silica nanoparticles as efficient fluorescent sensor for explosives detection in water― Microporous and Mesoporous Materials, 2014, 200, 281-286.	4.4	2
288	Direct Atomicâ€Level Imaging of Zeolites: Oxygen, Sodium in Naâ€LTA and Iron in Feâ€MFI. Angewandte Chemie, 2020, 132, 19678-19685.	2.0	2

#	Article	IF	CITATIONS
289	Probing the Design Rationale of a Highâ€Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity. Angewandte Chemie, 2020, 132, 19729-19737.	2.0	2
290	Perovskites march on: a themed collection. Chemical Science, 2020, 11, 3767-3768.	7.4	2
291	Electron Beam Irradiationâ€Induced Formation of Defectâ€Rich Zeolites under Ambient Condition within Minutes. Angewandte Chemie, 2021, 133, 14984-14989.	2.0	2
292	Catalytically active Rh species stabilized by zirconium and hafnium on zeolites. Inorganic Chemistry Frontiers, 2022, 9, 2395-2402.	6.0	2
293	Protozeoliteâ€Seeded Synthesis of Singleâ€Crystalline Hierarchical Zeolites with Facetâ€Shaped Mesopores and Their Catalytic Application in Methanolâ€ŧoâ€Propylene Conversion. Angewandte Chemie, 0, , .	2.0	2
294	(C ₆ N ₄ H ₂₁) ₂ [Ge ₇ O ₁₄ F _{6< A New Germanate Compound Constructed from Alternately Stacked Pseudo Tripleâ€6heet Layers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1362-1364.}	(/sub>]: 1.2	1
295	Quantum dots tethered membrane type 3 matrix metalloproteinase-targeting peptide for tumor optical imaging. Journal of Materials Chemistry B, 2018, 6, 7719-7727.	5.8	1
296	Intrinsic chiral photoswitches manipulate soft-materials. Light: Science and Applications, 2022, 11, 95.	16.6	1
297	Two-Dimensional Cationic Aluminoborate as a New Paradigm for Highly Selective and Efficient Cr(VI) Capture from Aqueous Solution. Jacs Au, 2022, 2, 1669-1678.	7.9	1
298	Inorganic Materials and Ionic Liquids: Preparation of Inorganic Materials Using Ionic Liquids (Adv.) Tj ETQqO 0 0 rg	BT /Overla 21.0	ock 10 Tf 50
299	Systematic Study of Tiâ€Distribution in Titanosilicate *BEA Zeolites via Symmetryâ€Adapted Enumeration. Chinese Journal of Chemistry, 2019, 37, 593-596.	4.9	0
300	Innentitelbild: Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shape‧elective Tandem Hydrogenation of Nitroarenes (Angew. Chem. 51/2019). Angewandte Chemie, 2019, 131, 18466-18466.	2.0	0
301	Frontispiz: Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, .	2.0	0
302	Titelbild: Direct Atomicâ€Level Imaging of Zeolites: Oxygen, Sodium in Naâ€LTA and Iron in Feâ€MFI (Angew.) Tj E	T <u>Q</u> 80000	rgBT /Overl

303	Titelbild: Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction (Angew. Chem. 19/2020). Angewandte Chemie, 2020, 132, 7341-7341.	2.0	0
304	Construction of Singleâ€Crystalline Hierarchical ZSMâ€5 with Open Nanoarchitectures via Anisotropicâ€Kinetics Transformation for the Methanolâ€ŧoâ€Hydrocarbons Reaction. Angewandte Chemie, 0, , .	2.0	0