List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7954344/publications.pdf Version: 2024-02-01

Κένι Δρλι

#	Article	IF	CITATIONS
1	White Matter Pathophysiology. , 2022, , 103-116.e4.		0
2	Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. , 2022, , 153-160.e4.		0
3	High Mobility Group A1 Regulates Transcription Levels of Oligodendrocyte Marker Genes in Cultured Oligodendrocyte Precursor Cells. International Journal of Molecular Sciences, 2022, 23, 2236.	1.8	2
4	Rho-Kinase Inhibition Improves the Outcome of Focal Subcortical White Matter Lesions. Stroke, 2022, 53, 2369-2376.	1.0	1
5	The brain vasculome. , 2022, , 427-438.		1
6	Biphasic roles of pentraxin 3 in cerebrovascular function after white matter stroke. CNS Neuroscience and Therapeutics, 2021, 27, 60-70.	1.9	8
7	Roles of A-kinase Anchor Protein 12 in Astrocyte and Oligodendrocyte Precursor Cell in Postnatal Corpus Callosum. Stem Cell Reviews and Reports, 2021, 17, 1446-1455.	1.7	3
8	ErbB3 is a critical regulator of cytoskeletal dynamics in brain microvascular endothelial cells: Implications for vascular remodeling and blood brain barrier modulation. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2242-2255.	2.4	6
9	Mature Adult Mice With Exercise-Preconditioning Show Better Recovery After Intracerebral Hemorrhage. Stroke, 2021, 52, 1861-1865.	1.0	11
10	Wiring and plumbing: Oligodendrocyte precursors and angiogenesis in the oligovascular niche. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2132-2133.	2.4	11
11	Transcriptome Profiling of Mouse Corpus Callosum After Cerebral Hypoperfusion. Frontiers in Cell and Developmental Biology, 2021, 9, 685261.	1.8	5
12	Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice. Science Translational Medicine, 2021, 13, .	5.8	34
13	Treadmill Exercise During Cerebral Hypoperfusion Has Only Limited Effects on Cognitive Function in Middle-Aged Subcortical Ischemic Vascular Dementia Mice. Frontiers in Aging Neuroscience, 2021, 13, 756537.	1.7	1
14	Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 501-512.	2.4	38
15	Treadmill Exercise Suppresses Cognitive Decline and Increases White Matter Oligodendrocyte Precursor Cells in a Mouse Model of Prolonged Cerebral Hypoperfusion. Translational Stroke Research, 2020, 11, 496-502.	2.3	22
16	Recent updates on mechanisms of cell-cell interaction in oligodendrocyte regeneration after white matter injury. Neuroscience Letters, 2020, 715, 134650.	1.0	5
17	Can oligodendrocyte precursor cells be a therapeutic target for mitigating cognitive decline in cerebrovascular disease?. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1735-1736.	2.4	14
18	Different responses after intracerebral hemorrhage between young and early middle-aged mice. Neuroscience Letters, 2020, 735, 135249.	1.0	12

#	Article	IF	CITATIONS
19	AKAP12 Supports Blood-Brain Barrier Integrity against Ischemic Stroke. International Journal of Molecular Sciences, 2020, 21, 9078.	1.8	11
20	Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice. Brain Plasticity, 2020, 5, 147-159.	1.9	10
21	From in vitro to in vivo reprogramming for neural transdifferentiation: An approach for CNS tissue remodeling using stem cell technology. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1739-1751.	2.4	6
22	Transcriptomic characterization of microglia activation in a rat model of ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S34-S48.	2.4	47
23	Soluble vascular endothelial-cadherin in CSF after subarachnoid hemorrhage. Neurology, 2020, 94, e1281-e1293.	1.5	14
24	Microglial responses after phagocytosis: <i>Escherichia <scp>coli</scp></i> bioparticles, but not cell debris or amyloid beta, induce matrix metalloproteinaseâ€9 secretion in cultured rat primary microglial cells. Glia, 2020, 68, 1435-1444.	2.5	9
25	Emerging Mechanism of Cell Death Caused by Stroke: A Role of Neurovascular Unit. Stroke Revisited, 2020, , 243-256.	0.2	0
26	Differential glial responses to intracerebral hemorrhage between young and middle-aged mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 1-P-040.	0.0	0
27	Blood–Brain Barrier Mechanisms in Stroke and Trauma. Handbook of Experimental Pharmacology, 2020, , 267-293.	0.9	7
28	Promoting Neuro-Supportive Properties of Astrocytes with Epidermal Growth Factor Hydrogels. Stem Cells Translational Medicine, 2019, 8, 1242-1248.	1.6	24
29	Brief review: Can modulating DNA methylation state help the clinical application of oligodendrocyte precursor cells as a source of stem cell therapy?. Brain Research, 2019, 1723, 146386.	1.1	4
30	Early molecular oxidative stress biomarkers of ischemic penumbra in acute stroke. Neurology, 2019, 93, e1288-e1298.	1.5	36
31	Role of Perivascular Oligodendrocyte Precursor Cells in Angiogenesis After Brain Ischemia. Journal of the American Heart Association, 2019, 8, e011824.	1.6	44
32	Differential roles of epigenetic regulators in the survival and differentiation of oligodendrocyte precursor cells. Glia, 2019, 67, 718-728.	2.5	26
33	Heterogeneity of microglia and their differential roles in white matter pathology. CNS Neuroscience and Therapeutics, 2019, 25, 1290-1298.	1.9	74
34	Brief overview: Protective roles of astrocyte-derived pentraxin-3 in blood-brain barrier integrity. Brain Circulation, 2019, 5, 145.	0.7	10
35	Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion. Stroke, 2018, 49, 1003-1010.	1.0	66
36	TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion. Journal of Neuroscience, 2018, 38, 3520-3533.	1.7	102

#	Article	IF	CITATIONS
37	Effects of ischemic postâ€conditioning on neuronal <scp>VEGF</scp> regulation and microglial polarization in a rat model of focal cerebral ischemia. Journal of Neurochemistry, 2018, 146, 160-172.	2.1	43
38	Protective effects of a radical scavenger edaravone on oligodendrocyte precursor cells against oxidative stress. Neuroscience Letters, 2018, 668, 120-125.	1.0	23
39	Oxidative Stress Biomarkers of Brain Damage. Stroke, 2018, 49, 630-637.	1.0	36
40	A-Kinase Anchor Protein 12 Is Required for Oligodendrocyte Differentiation in Adult White Matter. Stem Cells, 2018, 36, 751-760.	1.4	27
41	Oligodendrogenesis after traumatic brain injury. Behavioural Brain Research, 2018, 340, 205-211.	1.2	25
42	Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 75-86.	2.4	51
43	Comparative transcriptome of neurons after oxygen–glucose deprivation: Potential differences in neuroprotection versus reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2236-2250.	2.4	13
44	Molecular Mechanisms of Oligodendrocyte Regeneration in White Matter-Related Diseases. International Journal of Molecular Sciences, 2018, 19, 1743.	1.8	26
45	Role of oligodendrocyte-neurovascular unit in white matter repair. Neuroscience Letters, 2018, 684, 175-180.	1.0	24
46	White-matter repair: Interaction between oligodendrocytes and the neurovascular unit. Brain Circulation, 2018, 4, 118.	0.7	41
47	Non-cell autonomous mechanisms of proliferation and differentiation of oligodendrocyte precursor cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY8-1.	0.0	0
48	A radical scavenger edaravone and oligodendrocyte protection/regeneration. Neural Regeneration Research, 2018, 13, 1550.	1.6	3
49	A Novel Three-Dimensional Culture System for Oligodendrocyte Precursor Cells. Stem Cells and Development, 2017, 26, 1078-1085.	1.1	12
50	Brain Angiogenesis After Stroke. , 2017, , 473-494.		3
51	<i>Stroke</i> Literature Synopses: Basic Science. Stroke, 2017, 48, .	1.0	0
52	Mechanisms of Axonal Damage and Repair after Central Nervous System Injury. Translational Stroke Research, 2017, 8, 14-21.	2.3	52
53	Neuregulin1â€Î² decreases interleukinâ€1βâ€induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability. Journal of Neurochemistry, 2016, 136, 250-257.	2.1	11
54	A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model. Neuroscience Letters, 2016, 633, 7-13.	1.0	46

#	Article	IF	CITATIONS
55	Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nature Medicine, 2016, 22, 1335-1341.	15.2	123
56	Crosstalk Between Cerebral Endothelium and Oligodendrocyte After Stroke. Springer Series in Translational Stroke Research, 2016, , 151-170.	0.1	1
57	Stroke Literature Synopses: Basic Science. Stroke, 2016, 47, e187.	1.0	0
58	CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 781-793.	2.4	35
59	Sphingosine kinase inhibition ameliorates chronic hypoperfusion-induced white matter lesions. Neurochemistry International, 2016, 94, 90-97.	1.9	18
60	Astrocyte-Derived Pentraxin 3 Supports Blood–Brain Barrier Integrity Under Acute Phase of Stroke. Stroke, 2016, 47, 1094-1100.	1.0	86
61	Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic–ischemic injury. Neuroscience Research, 2016, 106, 66-69.	1.0	19
62	Subcortical ischemic vascular disease: Roles of oligodendrocyte function in experimental models of subcortical white-matter injury. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 187-198.	2.4	47
63	Clinical application of oligodendrocyte precursor cells for cell-based therapy. Brain Circulation, 2016, 2, 121.	0.7	8
64	Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology. Scientific Reports, 2015, 5, 15222.	1.6	162
65	Differential Effects of Isoxazole-9 on Neural Stem/Progenitor Cells, Oligodendrocyte Precursor Cells, and Endothelial Progenitor Cells. PLoS ONE, 2015, 10, e0138724.	1.1	14
66	Mechanisms of cell–cell interaction in oligodendrogenesis and remyelination after stroke. Brain Research, 2015, 1623, 135-149.	1.1	58
67	<i>Stroke</i> Literature Synopses: Basic Science. Stroke, 2015, 46, e133.	1.0	0
68	<i>Stroke</i> Literature Synopses: Basic Science. Stroke, 2015, 46, e250.	1.0	0
69	Targeting the Neurovascular Unit in Brain Trauma. CNS Neuroscience and Therapeutics, 2015, 21, 304-308.	1.9	43
70	Discovery of a novel 2,3,11,11a-tetrahydro-1H-pyrazino[1,2-b]isoquinoline-1,4(6H)-dione series promoting neurogenesis of human neural progenitor cells. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3748-3753.	1.0	11
71	<i>Stroke</i> Literature Synopses: Basic Science. Stroke, 2015, 46, e78.	1.0	0
72	Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neuroscience Letters, 2015, 597, 164-169.	1.0	87

#	Article	IF	CITATIONS
73	Effects of Postconditioning on Neurogenesis and Angiogenesis During the Recovery Phase After Focal Cerebral Ischemia. Stroke, 2015, 46, 2691-2694.	1.0	42
74	Stroke Literature Synopses: Basic Science. Stroke, 2015, 46, e180.	1.0	0
75	Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor. Journal of Neuroscience, 2015, 35, 14002-14008.	1.7	183
76	Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro. Stem Cell Research, 2015, 15, 68-74.	0.3	31
77	From cell to cell: The breakdown of intercellular connectivity after stroke and how to regain contact. Brain Research, 2015, 1623, 1-2.	1.1	2
78	AKAP12 Mediates Barrier Functions of Fibrotic Scars during CNS Repair. PLoS ONE, 2014, 9, e94695.	1.1	31
79	Oligodendrocyte Precursor Cells Support Blood-Brain Barrier Integrity via TGF-β Signaling. PLoS ONE, 2014, 9, e103174.	1.1	127
80	Prompt meningeal reconstruction mediated by oxygen-sensitive AKAP12 scaffolding protein after central nervous system injury. Nature Communications, 2014, 5, 4952.	5.8	30
81	<i>Stroke</i> Literature Synopses: Basic Science. Stroke, 2014, 45, e247-8.	1.0	0
82	White Matter Hyperintensity Volume Correlates with Matrix Metalloproteinase-2 in Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 1300-1306.	0.7	24
83	A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood–brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion. Neuroscience Letters, 2014, 573, 40-45.	1.0	25
84	Reactive astrocytes promote adhesive interactions between brain endothelium and endothelial progenitor cells via HMGB1 and beta-2 integrin signaling. Stem Cell Research, 2014, 12, 531-538.	0.3	55
85	Crosstalk between cerebral endothelium and oligodendrocyte. Cellular and Molecular Life Sciences, 2014, 71, 1055-1066.	2.4	85
86	p38 MAP kinase mediates transforming-growth factor-β1-induced upregulation of matrix metalloproteinase-9 but not -2 in human brain pericytes. Brain Research, 2014, 1593, 1-8.	1.1	26
87	Matrix Metalloproteinases as an Inflammatory Mediator in the Neurovascular Unit. , 2014, , 87-96.		0
88	Experimental Global Ischemia and White Matter Injury. , 2014, , 197-217.		0
89	Highâ€mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter. Journal of Neurochemistry, 2013, 125, 273-280.	2.1	51
90	Oxidative Stress Interferes With White Matter Renewal After Prolonged Cerebral Hypoperfusion in Mice. Stroke, 2013, 44, 3516-3521.	1.0	130

#	Article	IF	CITATIONS
91	Age-Related Decline in Oligodendrogenesis Retards White Matter Repair in Mice. Stroke, 2013, 44, 2573-2578.	1.0	90
92	Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. Journal of Clinical Investigation, 2013, 123, 782-6.	3.9	140
93	Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. Frontiers in Cellular Neuroscience, 2013, 7, 275.	1.8	81
94	High-Mobility Group Box 1: An Amplifier of Stem and Progenitor Cell Activity After Stroke. , 2013, 118, 31-38.		19
95	Biphasic Mechanisms of Neurovascular Unit Injury and Protection in CNS Diseases. CNS and Neurological Disorders - Drug Targets, 2013, 12, 302-315.	0.8	85
96	Brain Angiogenesis After Stroke. , 2013, , 239-260.		1
97	Abstract TP432: Glyco-proteomic Study of Therapeutic Hypothermia in Global Ischemic Brain Injury Post Cardiac Arrest. Stroke, 2013, 44, .	1.0	0
98	Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7505-7510.	3.3	170
99	Injury and repair in the neurovascular unit. Neurological Research, 2012, 34, 325-330.	0.6	93
100	Cerebral endothelial derived vascular endothelial growth factor promotes the migration but not the proliferation of oligodendrocyte precursor cells in vitro. Neuroscience Letters, 2012, 513, 42-46.	1.0	52
101	Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia, 2012, 60, 875-881.	2.5	100
102	Pathophysiologic Cascades in Ischemic Stroke. International Journal of Stroke, 2012, 7, 378-385.	2.9	319
103	Experimental Platforms for Assessing White Matter Pathophysiology in Stroke. , 2012, , 57-78.		0
104	Cellular Mechanisms of Neurovascular Damage and Repair After Stroke. Journal of Child Neurology, 2011, 26, 1193-1198.	0.7	114
105	Vascular Endothelial Growth Factor Regulates the Migration of Oligodendrocyte Precursor Cells. Journal of Neuroscience, 2011, 31, 10666-10670.	1.7	122
106	Astrocytes protect oligodendrocyte precursor cells via MEK/ERK and PI3K/Akt signaling. Journal of Neuroscience Research, 2010, 88, 758-763.	1.3	81
107	Induction of Vascular Endothelial Growth Factor and Matrix Metalloproteinase-9 via CD47 Signaling in Neurovascular Cells. Neurochemical Research, 2010, 35, 1092-1097.	1.6	25
108	Edaravone, a free radical scavenger, protects components of the neurovascular unit against oxidative stress in vitro. Brain Research, 2010, 1307, 22-27.	1.1	69

#	Article	IF	CITATIONS
109	An Oligovascular Niche: Cerebral Endothelial Cells Promote the Survival and Proliferation of Oligodendrocyte Precursor Cells. Journal of Neuroscience, 2009, 29, 4351-4355.	1.7	214
110	Mechanisms and targets for angiogenic therapy after stroke. Cell Adhesion and Migration, 2009, 3, 216-223.	1.1	99
111	Combination therapy with normobaric oxygen (NBO) plus thrombolysis in experimental ischemic stroke. BMC Neuroscience, 2009, 10, 79.	0.8	32
112	Interleukin-1β Augments Angiogenic Responses of Murine Endothelial Progenitor Cells <i>in Vitro</i> . Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 933-943.	2.4	66
113	Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS Journal, 2009, 276, 4644-4652.	2.2	238
114	Experimental models for analysis of oligodendrocyte pathophysiology in stroke. Experimental & Translational Stroke Medicine, 2009, 1, 6.	3.2	60
115	Oligovascular Signaling in White Matter Stroke. Biological and Pharmaceutical Bulletin, 2009, 32, 1639-1644.	0.6	72
116	Novel lipoxygenase inhibitors as neuroprotective reagents. Journal of Neuroscience Research, 2008, 86, 904-909.	1.3	73
117	Tissue Plasminogen Activator Promotes Matrix Metalloproteinase-9 Upregulation After Focal Cerebral Ischemia. Stroke, 2005, 36, 1954-1959.	1.0	215
118	Involvement of ERK MAP kinase in endoplasmic reticulum stress in SH-SY5Y human neuroblastoma cells. Journal of Neurochemistry, 2004, 89, 232-239.	2.1	61
119	Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase-9 regulation in rat cortical astrocytes. Clia, 2003, 43, 254-264.	2.5	117
120	Lipoprotein receptor–mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nature Medicine, 2003, 9, 1313-1317.	15.2	434