Shan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7953855/publications.pdf

Version: 2024-02-01

		567281	552781
26	726	15	26
papers	citations	h-index	g-index
27	27	27	1080
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DAPK1 Interacts with the p38 Isoform MAPK14, Preventing Its Nuclear Translocation and Stimulation of Bone Marrow Adipogenesis. Stem Cells, 2022, 40, 508-522.	3.2	2
2	Autophagy-Mediated Activation of Mucosal-Associated Invariant T Cells Driven by Mesenchymal Stem Cell-Derived IL-15. Stem Cell Reports, 2021, 16, 926-939.	4.8	3
3	The N6-methyladenosine demethylase ALKBH5 negatively regulates the osteogenic differentiation of mesenchymal stem cells through PRMT6. Cell Death and Disease, 2021, 12, 578.	6.3	33
4	Effects of long-term culture on the biological characteristics and RNA profiles of human bone-marrow-derived mesenchymal stem cells. Molecular Therapy - Nucleic Acids, 2021, 26, 557-574.	5.1	16
5	SNP-adjacent super enhancer network mediates enhanced osteogenic differentiation of MSCs in ankylosing spondylitis. Human Molecular Genetics, 2021, 30, 277-293.	2.9	9
6	LncRNAâ€mRNA expression profiles and functional networks in osteoclast differentiation. Journal of Cellular and Molecular Medicine, 2020, 24, 9786-9797.	3.6	18
7	Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death and Disease, 2020, 11, 775.	6.3	47
8	The Development of Critical Care Medicine in China: From SARS to COVID-19 Pandemic. Critical Care Research and Practice, 2020, 2020, 1-7.	1,1	9
9	Loss of death-associated protein kinase 1 in human bone marrow mesenchymal stem cells decreases immunosuppression of CD4+ T cells. Journal of International Medical Research, 2020, 48, 030006052093345.	1.0	2
10	TRAF4 acts as a fate checkpoint to regulate the adipogenic differentiation of MSCs by activating PKM2. EBioMedicine, 2020, 54, 102722.	6.1	25
11	Presynaptic Caytaxin prevents apoptosis via deactivating DAPK1 in the acute phase of cerebral ischemic stroke. Experimental Neurology, 2020, 329, 113303.	4.1	13
12	IncRNA-mRNA expression profiles and functional networks of mesenchymal stromal cells involved in monocyte regulation. Stem Cell Research and Therapy, 2019, 10, 207.	5.5	5
13	Autophagy enhances mesenchymal stem cell-mediated CD4+ T cell migration and differentiation through CXCL8 and TGF- \hat{l}^21 . Stem Cell Research and Therapy, 2019, 10, 265.	5.5	48
14	TRAF4 positively regulates the osteogenic differentiation of mesenchymal stem cells by acting as an E3 ubiquitin ligase to degrade Smurf2. Cell Death and Differentiation, 2019, 26, 2652-2666.	11.2	38
15	Enhanced osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis: a study based on a three-dimensional biomimetic environment. Cell Death and Disease, 2019, 10, 350.	6.3	32
16	$\langle i \rangle \hat{l} \pm \langle j \rangle 2$ -HS Glycoprotein in Plasma Extracellular Vesicles Inhibits the Osteogenic Differentiation of Human Mesenchymal Stromal Cells In Vitro. Stem Cells International, 2019, 2019, 1-13.	2.5	2
17	Abnormal inhibition of osteoclastogenesis by mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing spondylitis. Cell Death and Disease, 2019, 10, 188.	6.3	36
18	LncRNA-OG Promotes the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Under the Regulation of hnRNPK. Stem Cells, 2019, 37, 270-283.	3.2	71

#	ARTICLE	IF	CITATION
19	Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2018, 9, 13.	5.5	81
20	Elevated TRAF4 expression impaired LPS-induced autophagy in mesenchymal stem cells from ankylosing spondylitis patients. Experimental and Molecular Medicine, 2017, 49, e343-e343.	7.7	9
21	MCP1 triggers monocyte dysfunctions during abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis. Journal of Molecular Medicine, 2017, 95, 143-154.	3.9	35
22	DAPK1 Signaling Pathways in Stroke: from Mechanisms to Therapies. Molecular Neurobiology, 2017, 54, 4716-4722.	4.0	51
23	TNF-αInduced the Enhanced Apoptosis of Mesenchymal Stem Cells in Ankylosing Spondylitis by Overexpressing TRAIL-R2. Stem Cells International, 2017, 2017, 1-14.	2.5	14
24	Differential Expression Profiles of Long Noncoding RNA and mRNA of Osteogenically Differentiated Mesenchymal Stem Cells in Ankylosing Spondylitis. Journal of Rheumatology, 2016, 43, 1523-1531.	2.0	43
25	Autophagy Improves the Immunosuppression of CD4+ T Cells by Mesenchymal Stem Cells Through Transforming Growth Factor- $\langle i \rangle \hat{l}^2 \langle i \rangle 1$. Stem Cells Translational Medicine, 2016, 5, 1496-1505.	3.3	44
26	Long-term exposure to diesel engine exhaust induces primary DNA damage: a population-based study. Occupational and Environmental Medicine, 2016, 73, 83-90.	2.8	40