Eva Baldrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/795352/publications.pdf

Version: 2024-02-01

236925 189892 2,561 60 25 50 h-index citations g-index papers 60 60 60 3196 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Detection of Viruses and Virus-Neutralizing Antibodies Using Synthetic Erythrocytes: Toward a Tuneable Tool for Virus Surveillance. ACS Sensors, 2021, 6, 83-90.	7.8	2
2	Detection of Plasmodium falciparum malaria in 1Âh using a simplified enzyme-linked immunosorbent assay. Analytica Chimica Acta, 2021, 1152, 338254.	5.4	7
3	Smartphone-Enabled Personalized Diagnostics: Current Status and Future Prospects. Diagnostics, 2021, 11, 1067.	2.6	16
4	Development of a Fast Chemiluminescent Magneto-Immunoassay for Sensitive <i>Plasmodium falciparum</i> Detection in Whole Blood. Analytical Chemistry, 2021, 93, 12793-12800.	6.5	10
5	Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care. ACS Sensors, 2021, 6, 4067-4075.	7.8	45
6	Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. Biosensors and Bioelectronics, 2020, 150, 111925.	10.1	52
7	An internet of things-based intensity and time-resolved fluorescence reader for point-of-care testing. Biosensors and Bioelectronics, 2020, 154, 112074.	10.1	13
8	Paper microfluidics on screen-printed electrodes for simple electrochemical magneto-immunosensor performance. Sensors and Actuators B: Chemical, 2019, 298, 126897.	7.8	13
9	AuNPs/methylene blue dual-signal nanoimmunoconjugates and electrode activation for electrochemical biosensors. Journal of Electroanalytical Chemistry, 2019, 855, 113500.	3.8	6
10	Competitive USB-Powered Hand-Held Potentiostat for POC Applications: An HRP Detection Case. Sensors, 2019, 19, 5388.	3.8	9
11	Electrochemical Magneto-immunosensors as Fast and Efficient Tools for Point-of-care Diagnostics. RSC Detection Science, 2019, , 101-134.	0.0	O
12	NaNO ₃ /NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors. Analytical Chemistry, 2018, 90, 4010-4018.	6.5	26
13	Using magnetic beads and signal amplifiers to produce short and simple immunoassays: Application to MMP-9 detection in plasma samples. Analytica Chimica Acta, 2018, 999, 144-154.	5.4	31
14	Detection of plasma MMP-9 within minutes. Unveiling some of the clues to develop fast and simple electrochemical magneto-immunosensors. Biosensors and Bioelectronics, 2018, 115, 45-52.	10.1	32
15	Using polyHRP to produce simplified immunoassays and electrochemical immunosensors. Application to MMP-9 detection in plasma and uterine aspirates. Sensors and Actuators B: Chemical, 2018, 269, 377-384.	7.8	14
16	Electrochemical Lateral Flow Devices: Towards Rapid Immunomagnetic Assays. ChemElectroChem, 2017, 4, 880-889.	3.4	46
17	Effect of agitation in magneto-assay performance. Sensors and Actuators B: Chemical, 2017, 247, 718-726.	7.8	3
18	Developing enhanced magnetoimmunosensors based on low-cost screen-printed electrode devices. Reviews in Analytical Chemistry, 2016, 35, 53-85.	3.2	17

#	Article	IF	Citations
19	Detection of uric acid at reversibly nanostructured thin-film microelectrodes. Sensors and Actuators B: Chemical, 2016, 234, 667-673.	7.8	25
20	Miniaturized metal oxide pH sensors for bacteria detection. Talanta, 2016, 147, 364-369.	5.5	46
21	Reversible nanostructuration of microfluidic electrode devices by CNT magnetic co-entrapment. Lab on A Chip, 2015, 15, 3269-3273.	6.0	3
22	Dual chronoamperometric detection of enzymatic biomarkers using magnetic beads and a low-cost flow cell. Biosensors and Bioelectronics, 2015, 69, 328-336.	10.1	28
23	CNT Wiring for Signal Amplification in Electrochemical Magnetosensors. Procedia Engineering, 2014, 87, 712-715.	1.2	3
24	Electrochemical biosensing of non-electroactive targets using ferrocene-labeled magnetic particles and CNT wiring. Analyst, The, 2014, 139, 1334.	3.5	5
25	Carbon nanotube wiring for signal amplification of electrochemical magneto immunosensors: application to myeloperoxidase detection. Analytical and Bioanalytical Chemistry, 2014, 406, 5487-5493.	3.7	23
26	Electrochemical detection of dopamine using streptavidin-coated magnetic particles and carbon nanotube wiring. Sensors and Actuators B: Chemical, 2014, 203, 891-898.	7.8	31
27	Effect of the transducer's surface pre-treatment on SPR aptasensor development. Sensors and Actuators B: Chemical, 2014, 191, 634-642.	7.8	6
28	Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials. BMC Microbiology, 2013, 13, 88.	3.3	16
29	Characterization and optimization of carbon nanotube electrodes produced by magnetic entrapment: Application to paracetamol detection. Sensors and Actuators B: Chemical, 2013, 185, 685-693.	7.8	19
30	Voltammetric discrimination of skatole and indole at disposable screen printed electrodes. Analyst, The, 2013, 138, 1346.	3.5	4
31	Detection of sample conductivity and bacterial presence using inductive microcoils. Effect of device size and geometry. Sensors and Actuators B: Chemical, 2013, 181, 816-822.	7.8	3
32	Iridium oxide pH sensor for biomedical applications. Case urea–urease in real urine samples. Biosensors and Bioelectronics, 2013, 39, 163-169.	10.1	104
33	Chronoamperometric Magneto Immunosensor for Myeloperoxidase Detection in Human Plasma Based on a Magnetic Switch Produced by 3D Laser Sintering. Analytical Chemistry, 2013, 85, 9049-9056.	6.5	26
34	Electrochemical Detection of Quorum Sensing Signaling Molecules by Dual Signal Confirmation at Microelectrode Arrays. Analytical Chemistry, 2011, 83, 2097-2103.	6.5	22
35	Carbon Nanotube Wiring: A Tool for Straightforward Electrochemical Biosensing at Magnetic Particles. Analytical Chemistry, 2011, 83, 9244-9250.	6.5	25
36	Electrochemical Detection of Testosterone by Use of Three-Dimensional Disc–Ring Microelectrode Sensing Platforms: Application to Doping Monitoring. Analytical Chemistry, 2011, 83, 4037-4044.	6.5	21

#	Article	IF	Citations
37	Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosensors and Bioelectronics, 2011, 26, 3633-3640.	10.1	69
38	Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: Application to dopamine detection. Biosensors and Bioelectronics, 2011, 26, 1876-1882.	10.1	59
39	Aptamers: Versatile Tools for Reagentless Aptasensing. , 2010, , 675-722.		4
40	Amperometric detection of Enterobacteriaceae in river water by measuring \hat{l}^2 -galactosidase activity at interdigitated microelectrode arrays. Analytica Chimica Acta, 2010, 677, 156-161.	5.4	47
41	Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores. Biosensors and Bioelectronics, 2010, 25, 2309-2312.	10.1	59
42	Inductive microcoils for the fast and simple detection of bacterial presence. Sensors and Actuators B: Chemical, 2010, 147, 304-309.	7.8	5
43	Impedance biosensing using phages for bacteria detection: Generation of dual signals as the clue for in-chip assay confirmation. Biosensors and Bioelectronics, 2010, 26, 1261-1267.	10.1	84
44	Biosensing at disk microelectrode arrays. Inter-electrode functionalisation allows formatting into miniaturised sensing platforms of enhanced sensitivity. Biosensors and Bioelectronics, 2009, 25, 920-926.	10.1	35
45	Captavidin: a new regenerable biocomponent for biosensing?. Analyst, The, 2009, 134, 2338.	3.5	13
46	Self-assembled monolayers as a base for immunofunctionalisation: unequal performance for protein and bacteria detection. Analytical and Bioanalytical Chemistry, 2008, 390, 1557-1562.	3.7	15
47	Immunofunctionalisation of gold transducers for bacterial detection by physisorption. Analytical and Bioanalytical Chemistry, 2008, 391, 2825-2835.	3.7	23
48	Sensing bacteria but treating them well: Determination of optimal incubation and storage conditions. Analytical Biochemistry, 2008, 383, 68-75.	2.4	13
49	Gold immuno-functionalisation via self-assembled monolayers: Study of critical parameters and comparative performance for protein and bacteria detection. Journal of Immunological Methods, 2008, 336, 203-212.	1.4	29
50	Detection of <i>Escherichia coli</i> and <i>Salmonella typhimurium</i> Using Interdigitated Microelectrode Capacitive Immunosensors: The Importance of Transducer Geometry. Analytical Chemistry, 2008, 80, 7239-7247.	6.5	96
51	Enzyme shadowing: using antibody–enzyme dually-labeled magnetic particles for fast bacterial detection. Analyst, The, 2008, 133, 1009.	3.5	15
52	Reagentless, Reusable, Ultrasensitive Electrochemical Molecular Beacon Aptasensor. Journal of the American Chemical Society, 2006, 128, 117-124.	13.7	588
53	An FB-NOF mediated duplication of the white gene is responsible for the zeste 1 phenotype in some Drosophila melanogaster unstable strains. Molecular Genetics and Genomics, 2006, 275, 35-43.	2.1	3
54	Electronic â€~Off-On' Molecular Switch for Rapid Detection of Thrombin. Electroanalysis, 2006, 18, 1957-1962.	2.9	49

#	Article	IF	CITATION
55	Ability of thrombin to act as molecular chaperone, inducing formation of quadruplex structure of thrombin-binding aptamer. Analytical Biochemistry, 2005, 341, 194-197.	2.4	57
56	Reusable Impedimetric Aptasensor. Analytical Chemistry, 2005, 77, 6320-6323.	6.5	257
57	Displacement Enzyme Linked Aptamer Assay. Analytical Chemistry, 2005, 77, 4774-4784.	6.5	78
58	Aptasensor Development:Â Elucidation of Critical Parameters for Optimal Aptamer Performance. Analytical Chemistry, 2004, 76, 7053-7063.	6.5	204
59	Germline mutations induced by N-nitroso-N-ethylurea do not affect the inserted copia retrotransposon in a Drosophila melanogaster wa mutant. Mutagenesis, 2003, 18, 527-531.	2.6	3
60	Overcoming false negatives due to the genomic context in polymerase chain reaction amplification. Journal of Proteomics, 1999, 40, 45-48.	2.4	4