Marc Buehler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/795350/publications.pdf

Version: 2024-02-01

117625 168389 4,679 57 34 53 h-index citations g-index papers 61 61 61 6395 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation. Cell Stem Cell, 2015, 17, 471-485.	11.1	505
2	Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m ⁶ A machinery component Wtap/Fl(2)d. Genes and Development, 2018, 32, 415-429.	5.9	416
3	Tethering RITS to a Nascent Transcript Initiates RNAi- and Heterochromatin-Dependent Gene Silencing. Cell, 2006, 125, 873-886.	28.9	355
4	RNAi-Dependent and -Independent RNAÂTurnover Mechanisms Contribute toÂHeterochromatic Gene Silencing. Cell, 2007, 129, 707-721.	28.9	226
5	EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′ UTR length. Nature Structural and Molecular Biology, 2006, 13, 462-464.	8.2	225
6	Transcription and RNAi in heterochromatic gene silencing. Nature Structural and Molecular Biology, 2007, 14, 1041-1048.	8.2	211
7	Regulation of Transcription through Acetylation of H3K122 on the Lateral Surface of the Histone Octamer. Cell, 2013, 152, 859-872.	28.9	209
8	TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nature Structural and Molecular Biology, 2008, 15, 1015-1023.	8.2	173
9	Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes. Nature, 2018, 557, 739-743.	27.8	169
10	Coupling of Double-Stranded RNA Synthesis and siRNA Generation in Fission Yeast RNAi. Molecular Cell, 2007, 27, 449-461.	9.7	134
11	The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites that Emerged from SINE Expansions in Mouse. Cell, 2019, 178, 1437-1451.e14.	28.9	118
12	RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nature Structural and Molecular Biology, 2017, 24, 561-569.	8.2	117
13	HP1Swi6 Mediates the Recognition and Destruction of Heterochromatic RNA Transcripts. Molecular Cell, 2012, 47, 215-227.	9.7	115
14	Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Molecular Medicine, 2010, 2, 120-129.	6.9	113
15	Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nature Structural and Molecular Biology, 2007, 14, 200-207.	8.2	105
16	The Paf1 complex represses small-RNA-mediated epigenetic gene silencing. Nature, 2015, 520, 248-252.	27.8	92
17	Nuclear Retention of Fission Yeast Dicer Is a Prerequisite for RNAi-Mediated Heterochromatin Assembly. Developmental Cell, 2010, 18, 102-113.	7.0	81
18	Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nature Structural and Molecular Biology, 2011, 18, 94-99.	8.2	80

#	Article	IF	Citations
19	Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation. Molecular Cell, 2020, 77, 1222-1236.e13.	9.7	78
20	Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 709-716.	6.4	76
21	Noncoding RNAs prevent spreading of a repressive histone mark. Nature Structural and Molecular Biology, 2013, 20, 994-1000.	8.2	68
22	Efficient downregulation of immunoglobulin mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Research, 2004, 32, 3304-3315.	14.5	65
23	Small RNAs in the Transgenerational Inheritance of Epigenetic Information. Trends in Genetics, 2020, 36, 203-214.	6.7	65
24	Transcriptional Silencing of Nonsense Codon-Containing Immunoglobulin Minigenes. Molecular Cell, 2005, 18, 307-317.	9.7	64
25	Silent chromatin at the middle and ends: lessons from yeasts. EMBO Journal, 2009, 28, 2149-2161.	7.8	64
26	The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts. Genes and Development, 2016, 30, 2571-2580.	5.9	60
27	Intranuclear degradation of nonsense codonâ€containing mRNA. EMBO Reports, 2002, 3, 646-651.	4.5	54
28	RNAi keeps Atf1-bound stress response genes in check at nuclear pores. Genes and Development, 2012, 26, 683-692.	5.9	53
29	An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer. EMBO Journal, 2011, 30, 4223-4235.	7.8	45
30	RNA turnover and chromatin-dependent gene silencing. Chromosoma, 2009, 118, 141-151.	2.2	43
31	The Histone Acetyltransferase Mst2 Protects Active Chromatin from Epigenetic Silencing by Acetylating the Ubiquitin Ligase Brl1. Molecular Cell, 2017, 67, 294-307.e9.	9.7	41
32	Adenosine methylation as a molecular imprint defining the fate of <scp>RNA</scp> . FEBS Letters, 2018, 592, 2845-2859.	2.8	41
33	Studies on the Mechanism of RNAi-dependent Heterochromatin Assembly. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 461-471.	1.1	40
34	miR455 is linked to hypoxia signaling and is deregulated in preeclampsia. Cell Death and Disease, 2014, 5, e1408-e1408.	6.3	38
35	Chromatin-associated ncRNA activities. Chromosome Research, 2013, 21, 627-641.	2.2	35
36	Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression. Genes and Development, 2017, 31, 2115-2120.	5.9	33

#	Article	IF	Citations
37	Distinctive features of lincRNA gene expression suggest widespread RNA-independent functions. Life Science Alliance, 2018, 1, e201800124.	2.8	32
38	The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes and Development, 2019, 33, 1221-1235.	5.9	31
39	CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports, 2016, 7, 1059-1071.	4.8	25
40	Proteomic and functional analysis of the noncanonical poly(A) polymerase Cid14. Rna, 2010, 16, 1124-1129.	3.5	24
41	H3K9 methylation extends across natural boundaries of heterochromatin in the absence of an <scp>HP</scp> 1 protein. EMBO Journal, 2015, 34, 2789-2803.	7.8	24
42	Inheritance of a Phenotypically Neutral Epimutation Evokes Gene Silencing in Later Generations. Molecular Cell, 2019, 74, 534-541.e4.	9.7	23
43	m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Research, 2021, 49, 5568-5587.	14.5	21
44	Nonsense-associated alternative splicing of T-cell receptor genes: No evidence for frame dependence. Rna, 2005, 11, 147-156.	3.5	20
45	Alternative splicing induced by nonsense mutations in the immunoglobulin \hat{A} VDJ exon is independent of truncation of the open reading frame. Rna, 2005, 11, 139-146.	3.5	19
46	Noncoding RNAs prevent spreading of a repressive histone mark. Nature Structural and Molecular Biology, 2013, 20, 1340-1340.	8.2	16
47	Dicer and Hsp104 Function in a Negative Feedback Loop to Confer Robustness to Environmental Stress. Cell Reports, 2015, 10, 47-61.	6.4	15
48	Nuclear organisation and RNAi in fission yeast. Current Opinion in Cell Biology, 2013, 25, 372-377.	5.4	6
49	A fully automated deep learning pipeline for high-throughput colony segmentation and classification. Biology Open, 2020, 9, .	1.2	5
50	Dynamic nature of heterochromatin highlighted by a HP1 ^{Swi6} -dependent gene silencing mechanism. Cell Cycle, 2012, 11, 3907-3908.	2.6	4
51	<i>Schizosaccharomyces pombe</i> reporter strains for relative quantitative assessment of heterochromatin silencing. Yeast, 2012, 29, 335-341.	1.7	3
52	An enhancer screen identifies new suppressors of small-RNA-mediated epigenetic gene silencing. PLoS Genetics, 2021, 17, e1009645.	3.5	2
53	Long Non-coding RNA Depletion Using Self-Cleaving Ribozymes. Methods in Molecular Biology, 2021, 2167, 287-301.	0.9	2
54	A Detour to Mature. Molecular Cell, 2012, 46, 719-721.	9.7	0

MARC BUEHLER

#	Article	IF	CITATIONS
55	Genome-Engineering Tools to Establish Accurate Reporter Cell Lines That Enable Identification of Therapeutic Strategies to Treat Friedreich's Ataxia. Journal of Biomolecular Screening, 2015, 20, 760-767.	2.6	0
56	Scaling up dissection of functional RNA elements. Nature Structural and Molecular Biology, 2020, 27, 771-773.	8.2	0
57	RNA brings chromatin into shape. Biochemist, 2010, 32, 8-10.	0.5	0