Nathaniel W Jenkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7953214/publications.pdf

Version: 2024-02-01

933447 580821 47 719 10 25 citations g-index h-index papers 47 47 47 987 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Epidemiological Relevance of Elevated Preoperative Patient Health Questionnaire-9 Scores on Clinical Improvement Following Lumbar Decompression. International Journal of Spine Surgery, 2022, 16, 159-167.	1.5	1
2	The Worldwide Influence of Social Media on Cervical Spine Literature. International Journal of Spine Surgery, 2022, 16, 264-271.	1.5	5
3	Intraoperative risks of radiation exposure for the surgeon and patient. Annals of Translational Medicine, 2021, 9, 84-84.	1.7	15
4	The influence of cognitive behavioral therapy on lumbar spine surgery outcomes: a systematic review and meta-analysis. European Spine Journal, 2021, 30, 1365-1379.	2.2	14
5	The Perioperative Symptom Severity of Higher Patient Health Questionnaire-9 Scores Between Genders in Single-Level Lumbar Fusion. International Journal of Spine Surgery, 2021, 15, 62-73.	1.5	6
6	Role of Gender in Improvement of Depressive Symptoms Among Patients Undergoing Cervical Spine Procedures. Neurospine, 2021, 18, 217-225.	2.9	1
7	Patient-Reported Outcomes Measurement Information System Physical Function Validation for Use in Anterior Cervical Discectomy and Fusion: A 2-Year Follow-up Study. Neurospine, 2021, 18, 155-162.	2.9	8
8	Multimodal Analgesic Management for Cervical Spine Surgery in the Ambulatory Setting. International Journal of Spine Surgery, 2021, 15, 219-227.	1.5	7
9	Patient Health Questionnaire-9 Is a Valid Assessment for Depression in Minimally Invasive Lumbar Discectomy. Neurospine, 2021, 18, 369-376.	2.9	3
10	Charlson Comorbidity Index: An Inaccurate Predictor of Minimally Invasive Lumbar Spinal Fusion Outcomes. International Journal of Spine Surgery, 2021, 15, 770-779.	1.5	8
11	The Influence of Sex on Clinical Outcomes in Minimally Invasive Lumbar Decompression. International Journal of Spine Surgery, 2021, 15, 763-769.	1.5	2
12	Validation of VR-12 Physical Function in Minimally Invasive Lumbar Discectomy. World Neurosurgery, 2021, 155, e362-e368.	1.3	3
13	Multimodal Analgesic Management for Lumbar Decompression Surgery in the Ambulatory Setting: Clinical Case Series and Review of the Literature. World Neurosurgery, 2021, 154, e656-e664.	1.3	3
14	Response to Letter to the Editor by Soffin et al International Journal of Spine Surgery, 2021, 15, 850-852.	1.5	0
15	Readability Analysis of Patient-Accessible Information Regarding Ambulatory Surgical Center Procedures. International Journal of Spine Surgery, 2021, 15, 8133.	1.5	1
16	Recovery of Physical Function Based on Body Mass Index Following Anterior Cervical Discectomy and Fusion. International Journal of Spine Surgery, 2021, 15, 1123-1132.	1.5	0
17	Association of Preoperative Physical Function and Changes in Mental Health After Minimally Invasive Transforaminal Lumbar Interbody Fusion. International Journal of Spine Surgery, 2021, 15, 1115-1122.	1.5	2
18	Commentary: Anterior Cervical Discectomy and Fusion in the Outpatient Ambulatory Surgery Setting: Analysis of 2000 Consecutive Cases. Neurosurgery, 2020, 86, E316-E317.	1.1	0

#	Article	IF	CITATIONS
19	Validity of Patient Health Questionnaire-9 in Minimally Invasive Lumbar Interbody Fusion. Spine, 2020, 45, E663-E669.	2.0	12
20	Does day of surgery affect length of stay and hospital charges following lumbar decompression?. Journal of Orthopaedics, Trauma and Rehabilitation, 2020, 27, 157-161.	0.1	0
21	Preoperative patient activation is predictive of improvements in patient-reported outcomes following minimally invasive lumbar decompression. European Spine Journal, 2020, 29, 2222-2230.	2.2	3
22	Validating the VR-12 Physical Function Instrument After Anterior Cervical Discectomy and Fusion with SF-12, PROMIS, and NDI. HSS Journal, 2020, 16, 443-451.	1.7	11
23	Outcomes of Expandable Interbody Devices in Lumbar Fusion. Clinical Spine Surgery, 2020, 33, 230-243.	1.3	3
24	Validation of PROMIS Physical Function in MIS TLIF. Spine, 2020, 45, E1516-E1522.	2.0	26
25	Commentary: Patient-Controlled Analgesia Following Lumbar Spinal Fusion Surgery Is Associated With Increased Opioid Consumption and Opioid-Related Adverse Events. Neurosurgery, 2020, 87, E311-E312.	1.1	0
26	The influence of gender on postoperative PROMIS physical function outcomes following minimally invasive transforaminal lumbar interbody fusion. Journal of Clinical Orthopaedics and Trauma, 2020, 11, 910-915.	1.5	5
27	Complications Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clinical Spine Surgery, 2020, 33, E236-E240.	1.3	11
28	The identification of risk factors for increased postoperative pain following minimally invasive transforaminal lumbar interbody fusion. European Spine Journal, 2020, 29, 1304-1310.	2.2	6
29	A Validation of Patient Health Questionnaire-9 for Cervical Spine Surgery. Spine, 2020, 45, 1668-1675.	2.0	9
30	Are Preoperative PHQ-9 Scores Predictive of Postoperative Outcomes Following Anterior Cervical Discectomy and Fusion?. Clinical Spine Surgery, 2020, 33, E486-E492.	1.3	16
31	The Association of Preoperative Duration of Symptoms With Clinical Outcomes and Minimal Clinically Important Difference Following Anterior Cervical Discectomy and Fusion. Clinical Spine Surgery, 2020, 33, 378-381.	1.3	9
32	The Relationship Between Preoperative PROMIS Scores With Postoperative Improvements in Physical Function After Anterior Cervical Discectomy and Fusion. Neurospine, 2020, 17, 398-406.	2.9	11
33	A New Possible Standard in Evaluating Lower Extremity Motor Weakness. Neurospine, 2020, 17, 285-287.	2.9	1
34	Risk Factors for Medical and Surgical Complications After Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion. International Journal of Spine Surgery, 2020, 14, 125-132.	1.5	9
35	Improvements in Back and Leg Pain Following a Minimally Invasive Transforaminal Lumbar Interbody Fusion. International Journal of Spine Surgery, 2020, 14, 745-755.	1.5	9
36	Predictors of inpatient admission in the setting of anterior lumbar interbody fusion: a Minimally Invasive Spine Study Group (MISSG) investigation. Journal of Neurosurgery: Spine, 2020, 33, 446-454.	1.7	7

#	Article	IF	CITATIONS
37	Balancing Choices to Recover From the COVID-19 Pandemic. Neurospine, 2020, 17, 339-341.	2.9	O
38	Association of Preoperative PROMIS Scores With Short-term Postoperative Improvements in Physical Function After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Neurospine, 2020, 17, 417-425.	2.9	6
39	A Review of Vitamin D in Spinal Surgery: Deficiency Screening, Treatment, and Outcomes. International Journal of Spine Surgery, 2020, 14, 447-454.	1.5	7
40	Longitudinal Evaluation of Patient-Reported Outcomes Measurement Information System for Back and Leg Pain in Minimally Invasive Transforaminal Lumbar Interbody Fusion. Neurospine, 2020, 17, 862-870.	2.9	6
41	Outpatient Minimally Invasive Lumbar Fusion Using Multimodal Analgesic Management in the Ambulatory Surgery Setting. International Journal of Spine Surgery, 2020, 14, 970-981.	1.5	16
42	Evaluation of Postoperative Mental Health Outcomes in Patients Based on Patient-Reported Outcome Measurement Information System Physical Function Following Anterior Cervical Discectomy and Fusion. Neurospine, 2020, 17, 184-189.	2.9	11
43	Preface for focused issue: ambulatory spine surgery. Journal of Spine Surgery, 2019, 5, S122-S123.	1.2	1
44	A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using ¹⁸ F-FDG PET of the Brain. Radiology, 2019, 290, 456-464.	7.3	413
45	Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System. Radiology, 2017, 284, 169-179.	7.3	19
46	[¹⁸ F]-Sodium Fluoride PET MR–Based Localization and Quantification of Bone Turnover as a Biomarker for Facet Joint–Induced Disability. American Journal of Neuroradiology, 2017, 38, 2028-2031.	2.4	13
47	Response to the Letter to the Editor of X. Zhou et al. concerning "the influence of cognitive behavioral therapy on lumbar spine surgery outcomes: a systematic review and meta-analysis" by Parish JM, et al. (Eur Spine J [2021]; 30(5):1365–1379). European Spine Journal, 0, , .	2.2	O