
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952906/publications.pdf Version: 2024-02-01

YAN-7HONC PEL

#	Article	IF	CITATIONS
1	Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473, 66-69.	13.7	3,306
2	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351, 141-144.	6.0	1,594
3	Band Engineering of Thermoelectric Materials. Advanced Materials, 2012, 24, 6125-6135.	11.1	1,307
4	High thermoelectric figure of merit in heavy hole dominated PbTe. Energy and Environmental Science, 2011, 4, 2085.	15.6	631
5	Low effective mass leading to high thermoelectric performance. Energy and Environmental Science, 2012, 5, 7963.	15.6	511
6	High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping. Advanced Functional Materials, 2011, 21, 241-249.	7.8	484
7	Heavily Doped pâ€Type PbSe with High Thermoelectric Performance: An Alternative for PbTe. Advanced Materials, 2011, 23, 1366-1370.	11.1	461
8	Lead telluride alloy thermoelectrics. Materials Today, 2011, 14, 526-532.	8.3	444
9	Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule, 2018, 2, 976-987.	11.7	402
10	Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Advanced Materials, 2011, 23, 5674-5678.	11.1	378
11	Tellurium as a high-performance elemental thermoelectric. Nature Communications, 2016, 7, 10287.	5.8	369
12	Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. Advanced Materials, 2017, 29, 1606768.	11.1	365
13	Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nature Communications, 2017, 8, 13828.	5.8	360
14	Reevaluation of PbTe1â^'xIx as high performance n-type thermoelectric material. Energy and Environmental Science, 2011, 4, 2090.	15.6	359
15	Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9705-9709.	3.3	359
16	Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Halfâ€Heusler Thermoelectric Materials. Advanced Functional Materials, 2013, 23, 5123-5130.	7.8	349
17	Optimum Carrier Concentration in nâ€Type PbTe Thermoelectrics. Advanced Energy Materials, 2014, 4, 1400486.	10.2	348
18	Lattice Strain Advances Thermoelectrics. Joule, 2019, 3, 1276-1288.	11.7	333

#	Article	IF	CITATIONS
19	Promoting SnTe as an Ecoâ€Friendly Solution for pâ€PbTe Thermoelectric via Band Convergence and Interstitial Defects. Advanced Materials, 2017, 29, 1605887.	11.1	317
20	Manipulation of Phonon Transport in Thermoelectrics. Advanced Materials, 2018, 30, e1705617.	11.1	316
21	The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions. Advanced Functional Materials, 2013, 23, 1586-1596.	7.8	293
22	Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg ₃ Sb ₂ -based materials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10548-10553.	3.3	267
23	High Band Degeneracy Contributes to High Thermoelectric Performance in pâ€Type Halfâ€Heusler Compounds. Advanced Energy Materials, 2014, 4, 1400600.	10.2	261
24	High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe. Advanced Energy Materials, 2012, 2, 670-675.	10.2	240
25	Interstitial Point Defect Scattering Contributing to High Thermoelectric Performance in SnTe. Advanced Electronic Materials, 2016, 2, 1600019.	2.6	235
26	Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chemistry of Materials, 2017, 29, 605-611.	3.2	226
27	Selfâ€Tuning the Carrier Concentration of PbTe/Ag ₂ Te Composites with Excess Ag for High Thermoelectric Performance. Advanced Energy Materials, 2011, 1, 291-296.	10.2	224
28	Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 2017, 9, e353-e353.	3.8	223
29	Wearable Thermoelectric Materials and Devices for Selfâ€Powered Electronic Systems. Advanced Materials, 2021, 33, e2102990.	11.1	221
30	Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 2017, 12, 55-60.	15.6	216
31	Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag ₈ SnSe ₆ . Advanced Science, 2016, 3, 1600196.	5.6	215
32	GeTe Thermoelectrics. Joule, 2020, 4, 986-1003.	11.7	215
33	Thermopower enhancement in Pb1â^'xMnxTe alloys and its effect on thermoelectric efficiency. NPG Asia Materials, 2012, 4, e28-e28.	3.8	214
34	High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons. Joule, 2017, 1, 816-830.	11.7	195
35	Band and scattering tuning for high performance thermoelectric Sn1â^'xMnxTe alloys. Journal of Materiomics, 2015, 1, 307-315.	2.8	193
36	Manipulation of Band Structure and Interstitial Defects for Improving Thermoelectric SnTe. Advanced Functional Materials, 2018, 28, 1803586.	7.8	183

YAN-ZHONG PEI

#	Article	IF	CITATIONS
37	Vacancy Manipulation for Thermoelectric Enhancements in GeTe Alloys. Journal of the American Chemical Society, 2018, 140, 15883-15888.	6.6	182
38	Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg ₃ Sb ₂ -Based Materials. ACS Energy Letters, 2017, 2, 2245-2250.	8.8	181
39	High Thermoelectric Efficiency of nâ€ŧype PbS. Advanced Energy Materials, 2013, 3, 488-495.	10.2	178
40	Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. Advanced Materials, 2019, 31, e1900108.	11.1	171
41	Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. Energy and Environmental Science, 2018, 11, 1848-1858.	15.6	163
42	Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy and Environmental Science, 2011, 4, 3640.	15.6	153
43	Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics. Advanced Science, 2017, 4, 1700341.	5.6	151
44	Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. Journal of Materials Chemistry, 2011, 21, 18256.	6.7	149
45	Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy, 2017, 41, 501-510.	8.2	130
46	Rationalizing phonon dispersion for lattice thermal conductivity of solids. National Science Review, 2018, 5, 888-894.	4.6	129
47	Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe. Energy and Environmental Science, 2019, 12, 3089-3098.	15.6	127
48	Interstitial Defects Improving Thermoelectric SnTe in Addition to Band Convergence. ACS Energy Letters, 2017, 2, 563-568.	8.8	123
49	Extraordinary nâ€Type Mg ₃ SbBi Thermoelectrics Enabled by Yttrium Doping. Advanced Materials, 2019, 31, e1903387.	11.1	120
50	Thermoelectric Properties of SnS with Na-Doping. ACS Applied Materials & Interfaces, 2017, 9, 34033-34041.	4.0	118
51	Thermoelectric Properties of Cu ₂ SnSe ₄ with Intrinsic Vacancy. Chemistry of Materials, 2016, 28, 6227-6232.	3.2	115
52	Vacancy phonon scattering in thermoelectric In2Te3–InSb solid solutions. Applied Physics Letters, 2009, 94, .	1.5	113
53	Advances in Environment-Friendly SnTe Thermoelectrics. ACS Energy Letters, 2017, 2, 2349-2355.	8.8	109
54	High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases. Journal of the American Chemical Society, 2018, 140, 16190-16197.	6.6	108

#	Article	IF	CITATIONS
55	Vacancy scattering for enhancing the thermoelectric performance of CuGaTe ₂ solid solutions. Journal of Materials Chemistry A, 2016, 4, 15464-15470.	5.2	106
56	Phonon Scattering through a Local Anisotropic Structural Disorder in the Thermoelectric Solid Solution Cu ₂ Zn _{1–<i>x</i>} Fe _{<i>x</i>} GeSe ₄ . Journal of the American Chemical Society, 2013, 135, 726-732.	6.6	100
57	A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nature Communications, 2022, 13, 237.	5.8	99
58	Promising thermoelectric performance in van der Waals layered SnSe2. Materials Today Physics, 2017, 3, 127-136.	2.9	95
59	Single parabolic band behavior of thermoelectric p-type CuGaTe ₂ . Journal of Materials Chemistry C, 2016, 4, 209-214.	2.7	94
60	Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys. Science Advances, 2021, 7, .	4.7	91
61	Crystal Structure Induced Ultralow Lattice Thermal Conductivity in Thermoelectric Ag ₉ AlSe ₆ . Advanced Energy Materials, 2018, 8, 1800030.	10.2	88
62	Electronic quality factor for thermoelectrics. Science Advances, 2020, 6, .	4.7	88
63	Substitutional defects enhancing thermoelectric CuGaTe ₂ . Journal of Materials Chemistry A, 2017, 5, 5314-5320.	5.2	87
64	Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5. Materials Today Physics, 2017, 3, 1-6.	2.9	82
65	Design of Highâ€Performance Disordered Halfâ€Heusler Thermoelectric Materials Using 18â€Electron Rule. Advanced Functional Materials, 2019, 29, 1905044.	7.8	81
66	Thermoelectric Enhancements in PbTe Alloys Due to Dislocationâ€Induced Strains and Converged Bands. Advanced Science, 2020, 7, 1902628.	5.6	78
67	Optimized thermoelectric properties of Mo3Sb7â^'xTex with significant phonon scattering by electrons. Energy and Environmental Science, 2011, 4, 4086.	15.6	77
68	Dopants effect on the band structure of PbTe thermoelectric material. Applied Physics Letters, 2012, 101, 092102.	1.5	76
69	Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics. Materials Today Physics, 2019, 9, 100096.	2.9	74
70	Material Design Considerations Based on Thermoelectric Quality Factor. Springer Series in Materials Science, 2013, , 3-32.	0.4	73
71	Revelation of Inherently High Mobility Enables Mg ₃ Sb ₂ as a Sustainable Alternative to nâ€Bi ₂ Te ₃ Thermoelectrics. Advanced Science, 2019, 6, 1802286.	5.6	71
72	Manipulation of Solubility and Interstitial Defects for Improving Thermoelectric SnTe Alloys. ACS Energy Letters, 2018, 3, 1969-1974.	8.8	69

#	Article	IF	CITATIONS
73	Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25. CheM, 2020, 6, 523-537.	5.8	69
74	Thermoelectric properties of GeSe. Journal of Materiomics, 2016, 2, 331-337.	2.8	67
75	Advances in Thermoelectric Mg ₃ Sb ₂ and Its Derivatives. Small Methods, 2018, 2, 1800022.	4.6	66
76	An over 10% module efficiency obtained using non-Bi ₂ Te ₃ thermoelectric materials for recovering heat of <600 K. Energy and Environmental Science, 2021, 14, 6506-6513.	15.6	66
77	Tellurium doped n-type Zintl Zr3Ni3Sb4 thermoelectric materials: Balance between carrier-scattering mechanism and bipolar effect. Materials Today Physics, 2017, 2, 54-61.	2.9	64
78	Applying Quantitative Microstructure Control in Advanced Functional Composites. Advanced Functional Materials, 2014, 24, 2135-2153.	7.8	63
79	Heterogeneous Distribution of Sodium for High Thermoelectric Performance of pâ€ŧype Multiphase Leadâ€Chalcogenides. Advanced Energy Materials, 2015, 5, 1501047.	10.2	63
80	Significant band engineering effect of YbTe for high performance thermoelectric PbTe. Journal of Materials Chemistry C, 2015, 3, 12410-12417.	2.7	61
81	Rational design of p-type thermoelectric PbTe: temperature dependent sodium solubility. Journal of Materials Chemistry A, 2013, 1, 8725.	5.2	56
82	Manipulation of charge transport in thermoelectrics. Npj Quantum Materials, 2017, 2, .	1.8	55
83	Efficient Sc-Doped Mg _{3.05–<i>x</i>} Sc <i>_x</i> SbBi Thermoelectrics Near Room Temperature. Chemistry of Materials, 2019, 31, 8987-8994.	3.2	55
84	Promising Thermoelectric Ag _{5â^îr} Te ₃ with Intrinsic Low Lattice Thermal Conductivity. ACS Energy Letters, 2017, 2, 2470-2477.	8.8	54
85	Performance optimization and single parabolic band behavior of thermoelectric MnTe. Journal of Materials Chemistry A, 2017, 5, 19143-19150.	5.2	53
86	Thermally insulative thermoelectric argyrodites. Materials Today, 2021, 48, 198-213.	8.3	52
87	Limit of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>z</mml:mi><mml:mi>Tin rocksalt structured chalcogenides by band convergence. Physical Review B, 2016, 94, .</mml:mi></mml:mrow></mml:math 	⊳ <td>ow∌ık /mml:∎</td>	ow∌ık /mml:∎
88	Orbital Alignment for High Performance Thermoelectric YbCd ₂ Sb ₂ Alloys. Chemistry of Materials, 2018, 30, 5339-5345.	3.2	50
89	Chemical composition tuning in quaternary p-type Pb-chalcogenides – a promising strategy for enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 2014, 16, 1835-1840.	1.3	48
90	Engineering the Thermoelectric Transport in Halfâ€Heusler Materials through a Bottomâ€Up Nanostructure Synthesis. Advanced Energy Materials, 2017, 7, 1700446.	10.2	48

YAN-ZHONG PEI

#	Article	IF	CITATIONS
91	Thermoelectric properties of Ag9GaS6 with ultralow lattice thermal conductivity. Materials Today Physics, 2018, 6, 60-67.	2.9	46
92	Thermoelectric Materials: Band Engineering of Thermoelectric Materials (Adv. Mater. 46/2012). Advanced Materials, 2012, 24, 6124-6124.	11.1	45
93	Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorganic Chemistry Frontiers, 2017, 4, 1066-1072.	3.0	45
94	Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. Materials Today Physics, 2019, 9, 100091.	2.9	45
95	Validity of rigid band approximation of PbTe thermoelectric materials. APL Materials, 2013, 1, .	2.2	44
96	Substitutions and dislocations enabled extraordinary n-type thermoelectric PbTe. Materials Today Physics, 2021, 17, 100355.	2.9	44
97	Alloying for orbital alignment enables thermoelectric enhancement of EuCd ₂ Sb ₂ . Journal of Materials Chemistry A, 2019, 7, 12773-12778.	5.2	42
98	Charge Transport in Thermoelectric SnSe Single Crystals. ACS Energy Letters, 2018, 3, 689-694.	8.8	41
99	Thermoelectric Transport Properties of Cd _{<i>x</i>} Bi _{<i>y</i>} Ge _{1–<i>x</i>–<i>y</i>} Te Alloys. ACS Applied Materials & Interfaces, 2018, 10, 39904-39911.	4.0	41
100	Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101214.	7.8	41
101	Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-Bi thermoelectrics. Materials Today Physics, 2021, 18, 100362.	2.9	41
102	High thermoelectric power factor in alloys based on CoSi. Applied Physics Letters, 2009, 94, .	1.5	39
103	High Thermoelectric Power Factor Near Room Temperature in Full-Heusler Alloys. Journal of Electronic Materials, 2009, 38, 1221-1223.	1.0	39
104	Single parabolic band transport in p-type EuZn ₂ Sb ₂ thermoelectrics. Journal of Materials Chemistry A, 2017, 5, 24185-24192.	5.2	38
105	Solute manipulation enabled band and defect engineering for thermoelectric enhancements of SnTe. InformaÄnÄ-MateriÄ¡ly, 2019, 1, 571-581.	8.5	36
106	Fabrication and Thermoelectric Properties of Single-Crystal Argyrodite Ag ₈ SnSe ₆ . Chemistry of Materials, 2019, 31, 2603-2610.	3.2	35
107	Spark Plasma Sintered Bulk Nanocomposites of Bi ₂ Te _{2.7} Se _{0.3} Nanoplates Incorporated Ni Nanoparticles with Enhanced Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 31816-31823.	4.0	32
108	Experimental revelation of multiband transport in heavily doped BaCd2Sb2 with promising thermoelectric performance. Materials Today Physics, 2019, 8, 123-127.	2.9	30

#	Article	IF	CITATIONS
109	Thermoelectric performance of tellurium-reduced quaternary p-type lead–chalcogenide composites. Acta Materialia, 2014, 80, 365-372.	3.8	28
110	Thermoelectric properties of n-type Nb-doped Ag8SnSe6. Journal of Applied Physics, 2016, 119, .	1.1	27
111	Considering the Role of Ion Transport in Diffusonâ€Dominated Thermal Conductivity. Advanced Energy Materials, 2022, 12, .	10.2	27
112	Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping. Nature Communications, 2021, 12, 3837.	5.8	24
113	Manipulation of Band Degeneracy and Lattice Strain for Extraordinary PbTe Thermoelectrics. Research, 2020, 2020, 8151059.	2.8	23
114	First-principles study on band structures and electrical transports of doped-SnTe. Journal of Materiomics, 2016, 2, 158-164.	2.8	22
115	Atomic disordering advances thermoelectric group IV telluride alloys with a multiband transport. Materials Today Physics, 2020, 15, 100247.	2.9	22
116	Near-room-temperature rhombohedral Ge1-Pb Te thermoelectrics. Materials Today Physics, 2020, 15, 100260.	2.9	20
117	Na-doping enables both dislocations and holes in EuMg ₂ Sb ₂ for thermoelectric enhancements. Journal of Materials Chemistry A, 2020, 8, 8345-8351.	5.2	20
118	Improved thermoelectric performance of Nb-doped lead selenide. Journal of Alloys and Compounds, 2014, 600, 91-95.	2.8	19
119	MnTe2 as a novel promising thermoelectric material. Journal of Materiomics, 2018, 4, 215-220.	2.8	19
120	Ternary thermoelectric AB2C2 Zintls. Journal of Alloys and Compounds, 2020, 821, 153497.	2.8	19
121	Thermoelectric p-Type Ag ₉ GaTe ₆ with an Intrinsically Low Lattice Thermal Conductivity. ACS Applied Energy Materials, 2020, 3, 1892-1898.	2.5	19
122	Texturization-Induced In-Plane High-Performance Thermoelectrics and Inapplicability of the Debye Model to Out-of-Plane Lattice Thermal Conductivity in Misfit-Layered Chalcogenides. ACS Applied Materials & Interfaces, 2019, 11, 48079-48085.	4.0	17
123	Nearly isotropic transport properties in anisotropically structured n-type single-crystalline Mg3Sb2. Materials Today Physics, 2021, 21, 100508.	2.9	17
124	Ultralow and glass-like lattice thermal conductivity in crystalline BaAg2Te2: Strong fourth-order anharmonicity and crucial diffusive thermal transport. Materials Today Physics, 2021, 21, 100487.	2.9	17
125	Promising cubic MnGeTe2 thermoelectrics. Science China Materials, 2019, 62, 379-388.	3.5	16
126	Resonant doping in BiCuSeO thermoelectrics from first principles. Journal of Materials Chemistry A, 2017, 5, 931-936.	5.2	15

#	Article	IF	CITATIONS
127	Thermoelectric properties of (GeTe)1-x[(Ag2Te)0.4(Sb2Te3)0.6]x alloys. Rare Metals, 2022, 41, 921-930.	3.6	15
128	One-Order Decreased Lattice Thermal Conductivity of SnSe Crystals by the Introduction of Nanometer SnSe ₂ Secondary Phase. Journal of Physical Chemistry C, 2019, 123, 27666-27671.	1.5	14
129	Ultralow lattice thermal conductivity enables high thermoelectric performance in BaAg2Te2 alloys. Materials Today Physics, 2022, 22, 100591.	2.9	14
130	Transport Properties of CdSb Alloys with a Promising Thermoelectric Performance. ACS Applied Materials & amp; Interfaces, 2019, 11, 27098-27103.	4.0	12
131	Soft-mode dynamics in the ferroelectric phase transition of GeTe. Npj Computational Materials, 2021, 7,	3.5	11
132	Manipulation of Defects for Highâ€Performance Thermoelectric PbTeâ€Based Alloys. Small Structures, 2021, 2, 2100016.	6.9	10
133	Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds. AIP Advances, 2015, 5, 053601.	0.6	9
134	Editorial for rare metals, special issue on advanced thermoelectric materials. Rare Metals, 2018, 37, 257-258.	3.6	9
135	Anharmonic lattice dynamics of Te and its counter-intuitive strain dependent lattice thermal conductivity. Journal of Materials Chemistry C, 2019, 7, 5970-5974.	2.7	9
136	Thermoelectric properties of Cu4Ge3Se5 with an intrinsic disordered zinc blende structure. Journal of Materials Chemistry A, 2020, 8, 3431-3437.	5.2	9
137	Enhanced Thermoelectric Performance in Ge _{0.955â^'} <i>_x</i> Sb <i>_x</i> Te/FeGe ₂ Composites Enabled by Hierarchical Defects. Small, 2021, 17, e2100915.	5.2	8
138	Dynamic disorder phonon scattering mediated by Cu atomic hopping and diffusion in Cu3SbSe3. Npj Computational Materials, 2020, 6, .	3.5	7
139	Effect of Ge Doping on Thermoelectric Properties of Sr _y Co ₄ Sb _{12-x} Ge _x . Japanese Journal of Applied Physics, 2008, 47, 7470.	0.8	5
140	Thermoelectric properties of Ni-doped BaSi ₂ . Functional Materials Letters, 2016, 09, 1650017.	0.7	5
141	Evaluation of Thermoelectric Properties of Ag _{0.366} Sb _{0.558} Te. Annalen Der Physik, 2020, 532, 1900561.	0.9	5
142	Revealing the origin of dislocations in Pb _{1â^'x} Sb _{2x/3} Se (0 < <i>x</i> ≤0.07). Nanoscale, 2020, 12, 19165-19169.	2.8	3
143	Thermoelectric Transport Properties of TmAg Cu1-Te2 solid solutions. Journal of Materiomics, 2021, 7, 886-893.	2.8	3
144	Individualization of optimal operation currents for promoting multi-stage thermoelectric cooling. Materials Today Physics, 2022, 26, 100746.	2.9	3

YAN-ZHONG PEI

#	Article	IF	CITATIONS
145	Linear dependence of the Hall coefficient of 1% Na doped PbTe with varying magnetic field. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1273-1275.	0.8	2
146	Early Career Researchers Present Their Latest Work at the Virtual Conference on Thermoelectrics 2020. ACS Applied Energy Materials, 2020, 3, 10278-10281.	2.5	2
147	Lead Chalcogenide Thermoelectric Materials. , 2019, , 83-104.		1
148	SnTe-Based Thermoelectrics. , 2019, , 63-81.		1
149	Pressure and doping effects on the structural stability of thermoelectric BaAg ₂ Te ₂ . Journal of Physics Condensed Matter, 2022, 34, 065401.	0.7	0
150	The Transport Properties of Quasi–One-Dimensional Ba3Co2O6(CO3)0.7. Frontiers in Physics, 2021, 9, .	1.0	0