Rafael Vazquez-Duhalt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitosan Nanoparticles Containing Lipoic Acid with Antioxidant Properties as a Potential Nutritional Supplement. Animals, 2022, 12, 417.	2.3	6
2	Polyethylene terephthalate nanoparticles effect on RAW 264.7 macrophage cells. Microplastics and Nanoplastics, 2022, 2, .	8.8	18
3	Virusâ€Based Nanoreactors with GALT Activity for Classic Galactosemia Therapy. ChemMedChem, 2021, 16, 1438-1445.	3.2	10
4	Extra-Heavy Crude Oil Degradation by Alternaria sp. Isolated from Deep-Sea Sediments of the Gulf of Mexico. Applied Sciences (Switzerland), 2021, 11, 6090.	2.5	10
5	Catalytic Kinetics Considerations and Molecular Tools for the Design of Multienzymatic Cascade Nanoreactors. ChemCatChem, 2021, 13, 3732-3748.	3.7	17
6	Enzymatic characterization of agmatinase (AGM-1) from the filamentous fungus Neurospora crassa. Fungal Genetics and Biology, 2021, 157, 103634.	2.1	1
7	Desbalance del sistema antioxidante causado por la exposición a nanopartÃculas de óxido de zinc y óxido de cobre. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2021, 15, 1e-13e.	0.1	0
8	Bi-enzymatic virus-like bionanoreactors for the transformation of endocrine disruptor compounds. International Journal of Biological Macromolecules, 2020, 146, 415-421.	7.5	19
9	3D printer waste, a new source of nanoplastic pollutants. Environmental Pollution, 2020, 267, 115609.	7.5	29
10	Camouflaged, activatable and therapeutic tandem bionanoreactors for breast cancer theranosis. Journal of Colloid and Interface Science, 2020, 580, 365-376.	9.4	9
11	Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. Beilstein Journal of Nanotechnology, 2020, 11, 372-382.	2.8	34
12	Respuestas celulares de macrófagos a nanopartÃculas de óxidos metálicos. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2020, 14, 1e-16e.	0.1	0
13	Evaluando la toxicidad de nanomateriales en modelos celulares tridimensionales. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2020, 13, 157-171.	0.1	0
14	Role and dynamics of an agmatinase-like protein (AGM-1) in Neurospora crassa. Fungal Genetics and Biology, 2019, 132, 103264.	2.1	5
15	Determination of conjugated protein on nanoparticles by an adaptation of the Coomassie blue dye method. MethodsX, 2019, 6, 2134-2140.	1.6	22
16	Addition of new catalytic sites on the surface of versatile peroxidase for enhancement of LRET catalysis. Enzyme and Microbial Technology, 2019, 131, 109429.	3.2	2
17	A novel and simple method for polyethylene terephthalate (PET) nanoparticle production. Environmental Science: Nano, 2019, 6, 2031-2036.	4.3	52
18	Enhanced laccase activity of biocatalytic hybrid copper hydroxide nanocages. Enzyme and Microbial Technology, 2019, 128, 59-66.	3.2	21

#	Article	IF	CITATIONS
19	Virusâ€Based Nanomotors for Cargo Delivery. ChemNanoMat, 2019, 5, 194-200.	2.8	28
20	Biocatalytic Nanoreactors for Medical Purposes. , 2019, , 637-671.		2
21	Enzymatic detoxification of organophosphorus pesticides and related toxicants. Journal of Pesticide Sciences, 2018, 43, 1-9.	1.4	41
22	Surface modification of protein enhances encapsulation in chitosan nanoparticles. Applied Nanoscience (Switzerland), 2018, 8, 1197-1203.	3.1	11
23	Enzymatic Activation of the Emerging Drug Resveratrol. Applied Biochemistry and Biotechnology, 2018, 185, 248-256.	2.9	11
24	Membrane-less enzymatic fuel cell operated under acidic conditions. Journal of Electroanalytical Chemistry, 2018, 830-831, 56-62.	3.8	10
25	Multifunctionalized biocatalytic P22 nanoreactor for combinatory treatment of ER+ breast cancer. Journal of Nanobiotechnology, 2018, 16, 17.	9.1	40
26	Chitosan-based biocatalytic nanoparticles for pollutant removal from wastewater. Enzyme and Microbial Technology, 2017, 100, 71-78.	3.2	29
27	Biocatalytic virus capsid as nanovehicle for enzymatic activation of Tamoxifen in tumor cells. Biotechnology Journal, 2017, 12, 1600706.	3.5	32
28	Biomaterial-based nanoreactors, an alternative for enzyme delivery. Nanotechnology Reviews, 2017, 6, 405-419.	5.8	34
29	PEGylation of cytochrome P450 enhances its biocatalytic performance for pesticide transformation. International Journal of Biological Macromolecules, 2017, 105, 163-170.	7.5	5
30	Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment. Macromolecular Bioscience, 2017, 17, .	4.1	11
31	Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions. , 2017, , 705-740.		1
32	New Bismuth Germanate Oxide Nanoparticle Material for Biolabel Applications in Medicine. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	13
33	Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite. PLoS ONE, 2016, 11, e0166205.	2.5	14
34	Enhancement of Peroxidase Stability Against Oxidative Self-Inactivation by Co-immobilization with a Redox-Active Protein in Mesoporous Silicon and Silica Microparticles. Nanoscale Research Letters, 2016, 11, 417.	5.7	14
35	Laccase encapsulation in chitosan nanoparticles enhances the protein stability against microbial degradation. Environmental Science and Pollution Research, 2016, 23, 18850-18857.	5.3	44
36	Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri. Environmental Science and Pollution Research, 2016, 23, 10773-10784.	5.3	21

#	Article	IF	CITATIONS
37	Substrate ionization energy influences the epoxidation of m-substituted styrenes catalyzed by chloroperoxidase from Caldariomyces fumago. Catalysis Communications, 2016, 77, 52-54.	3.3	7
38	Tryptophan-surface modification of versatile peroxidase from Bjerkandera adusta enhances its catalytic performance. Journal of Molecular Catalysis B: Enzymatic, 2016, 124, 45-51.	1.8	3
39	Biocatalytic Performance of Chloroperoxidase from Caldariomyces fumago Immobilized onto TiO2 Based Supports. Topics in Catalysis, 2016, 59, 387-393.	2.8	8
40	Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions. , 2016, , 1-36.		4
41	EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. Environmental Science and Pollution Research, 2015, 22, 8683-8692.	5.3	31
42	Design of a VLP-nanovehicle for CYP450 enzymatic activity delivery. Journal of Nanobiotechnology, 2015, 13, 66.	9.1	67
43	Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 90-95.	1.8	20
44	Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone. Genomics Data, 2015, 5, 235-237.	1.3	14
45	Microbial and Enzymatic Biotransformations of Asphaltenes. Petroleum Science and Technology, 2015, 33, 1017-1029.	1.5	29
46	Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 1-8.	1.8	16
47	Antioxidant Capacity of Poly(Ethylene Glycol) (PEG) as Protection Mechanism Against Hydrogen Peroxide Inactivation of Peroxidases. Applied Biochemistry and Biotechnology, 2015, 177, 1364-1373.	2.9	26
48	Efficient Biocatalytic Degradation of Pollutants by Enzymeâ€Releasing Selfâ€Propelled Motors. Chemistry - A European Journal, 2014, 20, 2866-2871.	3.3	71
49	Chemotherapy pro-drug activation by biocatalytic virus-like nanoparticles containing cytochrome P450. Enzyme and Microbial Technology, 2014, 60, 24-31.	3.2	69
50	QM/MM Molecular Modeling and Marcus Theory in the Molecular Design of Electrodes for Enzymatic Fuel Cells. ChemElectroChem, 2014, 1, 496-513.	3.4	17
51	Carrier-Free Immobilization of Lipase from <i>Candida rugosa</i> with Polyethyleneimines by Carboxyl-Activated Cross-Linking. Biomacromolecules, 2014, 15, 1896-1903.	5.4	54
52	Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Advances, 2014, 4, 27565-27570.	3.6	40
53	Bubble-Propelled Micromotors for Enhanced Transport of Passive Tracers. Langmuir, 2014, 30, 5082-5087.	3.5	136
54	Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability. Nanoscale Research Letters, 2014, 9, 409.	5.7	21

#	Article	IF	CITATIONS
55	Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes. Biosensors and Bioelectronics, 2014, 61, 569-574.	10.1	30
56	Spectroscopic characterization of 2,6-dimethoxyphenol radical intermediates in the Coriolopsis gallica laccase-mediator system. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 100-105.	1.8	11
57	Self-propelled chemically-powered plant-tissue biomotors. Chemical Communications, 2013, 49, 7307.	4.1	23
58	Nitrogen Limitation in Neochloris oleoabundans: A Reassessment of Its Effect on Cell Growth and Biochemical Composition. Applied Biochemistry and Biotechnology, 2013, 171, 1775-1791.	2.9	18
59	Prediction model based on decision tree analysis for laccase mediators. Enzyme and Microbial Technology, 2013, 52, 68-76.	3.2	32
60	Peroxidase activity stabilization of cytochrome P450BM3 by rational analysis of intramolecular electron transfer. Journal of Inorganic Biochemistry, 2013, 122, 18-26.	3.5	41
61	A spectroscopic characterization of a phenolic natural mediator in the laccase biocatalytic reaction. Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 203-208.	1.8	14
62	Unusual activation during peroxidase reaction of a cytochrome c variant. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 187-192.	1.8	5
63	Identification of volatile compounds produced by the bacterium <i><i>Burkholderia tropica</i></i> that inhibit the growth of fungal pathogens. Bioengineered, 2013, 4, 236-243.	3.2	93
64	Micromotorâ€Based High‥ielding Fast Oxidative Detoxification of Chemical Threats. Angewandte Chemie - International Edition, 2013, 52, 13276-13279.	13.8	184
65	Peroxidase-mediated synthesis of water-soluble fully sulfonated polyaniline. Synthetic Metals, 2012, 162, 794-799.	3.9	22
66	Laccase-Mediated Transformations of Endocrine Disrupting Chemicals Abolish Binding Affinities to Estrogen Receptors and Their Estrogenic Activity in Zebrafish. Applied Biochemistry and Biotechnology, 2012, 168, 864-876.	2.9	54
67	Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel, 2012, 92, 245-249.	6.4	34
68	Pesticide transformation by a variant of CYPBM3 with improved peroxygenase activity. Pesticide Biochemistry and Physiology, 2012, 102, 169-174.	3.6	13
69	Substitution of the Catalytic Metal and Protein PEGylation Enhances Activity and Stability of Bacterial Phosphotriesterase. Applied Biochemistry and Biotechnology, 2012, 166, 1236-1247.	2.9	19
70	Photoluminescence of Europium-Activated Hydroxyapatite Nanoparticles in Body Fluids. Science of Advanced Materials, 2012, 4, 558-562.	0.7	8
71	Molecular design of laccase cathode for direct electron transfer in a biofuel cell. Biosensors and Bioelectronics, 2011, 26, 2626-2631.	10.1	51
72	First evidence of mineralization of petroleum asphaltenes by a strain of <i>Neosartorya fischeri</i> . Microbial Biotechnology, 2011, 4, 663-672.	4.2	48

#	Article	IF	CITATIONS
73	Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 81-87.	1.8	27
74	Syringaldehyde a true laccase mediator: Comments on the Letter to the Editor from Jeon, J-R., Kim, E-J. and Chang, Y-S Chemosphere, 2011, 85, 1761-1762.	8.2	7
75	Heme destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago. Journal of Biological Inorganic Chemistry, 2011, 16, 63-68.	2.6	41
76	Enzymatic Synthesis of Semiconductor Polymers by Chloroperoxidase of Caldariomyces fumago. Applied Biochemistry and Biotechnology, 2010, 162, 927-934.	2.9	11
77	Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions. , 2010, , 2767-2785.		4
78	The effect of broccoli in diet on the cytochrome P450 activities of tilapia fish (Oreochromis) Tj ETQq0 0 0 rgBT /C)verlock 10) Tf 50 542 T 14
79	Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field. , 2010, , 179-206.		7
80	Effect of broccoli (Brassica oleracea) and its phytochemical sulforaphane in balanced diets on the detoxification enzymes levels of tilapia (Oreochromis niloticus) exposed to a carcinogenic and mutagenic pollutant. Chemosphere, 2009, 74, 1145-1151.	8.2	32
81	Halogenated pesticide transformation by a laccase–mediator system. Chemosphere, 2009, 77, 687-692.	8.2	107
82	Polyethylene glycol improves phenol removal by immobilized turnip peroxidase. Bioresource Technology, 2008, 99, 8605-8611.	9.6	61
83	A Novel Heme Peroxidase from <i>Raphanus sativus</i> Intrinsically Resistant to Hydrogen Peroxide. Engineering in Life Sciences, 2008, 8, 286-296.	3.6	17
84	Comparative intestinal absorption of amino acids in rainbow trout (Oncorhynchus mykiss), totoaba (Totoaba macdonaldi) and Pacific bluefin tuna (Thunnus orientalis). Aquaculture Nutrition, 2008, 14, 481-489.	2.7	14
85	Chemical Modification of Turnip Peroxidase with Methoxypolyethylene Glycol Enhances Activity and Stability for Phenol Removal Using the Immobilized Enzyme. Journal of Agricultural and Food Chemistry, 2008, 56, 8058-8065.	5.2	26
86	Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere, 2008, 72, 485-490.	8.2	52
87	Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago. Green Chemistry, 2008, 10, 647.	9.0	38
88	Biodegradation of Organic Pollutants by Halophilic Bacteria and Archaea. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 74-92.	1.0	205
89	Introduction. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 71-73.	1.0	3
90	Fungal Enzymes for Environmental Purposes, a Molecular Biology Challenge. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 172-180.	1.0	43

#	Article	IF	CITATIONS
91	The prospects for peroxidase-based biorefining of petroleum fuels. Biocatalysis and Biotransformation, 2007, 25, 114-129.	2.0	32
92	A catalytic approach to estimate the redox potential of heme-peroxidases. Biochemical and Biophysical Research Communications, 2007, 357, 804-808.	2.1	40
93	Nonylphenol algal bioaccumulation and its effect through the trophic chain. Chemosphere, 2007, 68, 662-670.	8.2	92
94	Effect of Alkaline Deamidation on the Structure, Surface Hydrophobicity, and Emulsifying Properties of the Z19 α-Zein. Journal of Agricultural and Food Chemistry, 2007, 55, 439-445.	5.2	107
95	Role of oxidizing mediators and tryptophan 172 in the decoloration of industrial dyes by the versatile peroxidase from Bjerkandera adusta. Journal of Molecular Catalysis B: Enzymatic, 2007, 46, 1-7.	1.8	46
96	Role of Phenanthrene in Rhamnolipid Production byP. putidain Different Media. Environmental Technology (United Kingdom), 2006, 27, 137-142.	2.2	32
97	Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. Enzyme and Microbial Technology, 2006, 38, 772-779.	3.2	52
98	Mechanism of versatile peroxidase inactivation by Ca2+ depletion. Biophysical Chemistry, 2006, 121, 163-170.	2.8	27
99	Effect of temperature and pH on the secondary structure and processes of oligomerization of 19ÂkDa alpha-zein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1110-1118.	2.3	107
100	Oxidative stabilization of isoâ€1â€cytochrome <i>c</i> by redoxâ€inspired protein engineering. FASEB Journal, 2006, 20, 1233-1235.	0.5	37
101	Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzyme and Microbial Technology, 2005, 36, 223-231.	3.2	74
102	Phylogenetic and biochemical characterisation of a recombinant laccase fromTrametes versicolor. FEMS Microbiology Letters, 2005, 244, 235-241.	1.8	56
103	Electron-balance during the oxidative self-inactivation of cytochrome c. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 41-44.	1.8	22
104	Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. Journal of Biotechnology, 2005, 117, 73-82.	3.8	63
105	Characterization of a 19 kDa α-Zein of High Purity. Journal of Agricultural and Food Chemistry, 2005, 53, 725-729.	5.2	83
106	Tryptophan-Based Radical in the Catalytic Mechanism of Versatile Peroxidase fromBjerkandera adustaâ€. Biochemistry, 2005, 44, 4267-4274.	2.5	94
107	Chapter 3 Enzymatic catalysis on petroleum products. Studies in Surface Science and Catalysis, 2004, 151, 67-111.	1.5	9
108	Biocatalytic transformation of petroporphyrins by chemical modified cytochrome C. Biotechnology and Bioengineering, 2004, 85, 790-798.	3.3	54

#	Article	IF	CITATIONS
109	Evolutionary and structural diversity of fungal laccases. Antonie Van Leeuwenhoek, 2003, 84, 289-299.	1.7	67
110	Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation, 2003, 14, 397-406.	3.0	92
111	Nature-Inspired Creation of Proteinâ `Polysaccharide Conjugate and Its Subsequent Assembly onto a Patterned Surface. Langmuir, 2003, 19, 9382-9386.	3.5	102
112	Manganese–lignin peroxidase hybrid fromBjerkandera adustaoxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Canadian Journal of Microbiology, 2003, 49, 675-682.	1.7	63
113	Will Biochemical Catalysis Impact the Petroleum Refining Industry?. Energy & Fuels, 2002, 16, 1239-1250.	5.1	44
114	High Temperature Biocatalysis by Chemically Modified Cytochrome c. Bioconjugate Chemistry, 2002, 13, 1336-1344.	3.6	67
115	Cross-linked crystals of chloroperoxidase. Biochemical and Biophysical Research Communications, 2002, 295, 828-831.	2.1	46
116	Effect of pollutants on the ergosterol content as indicator of fungal biomass. Journal of Microbiological Methods, 2002, 50, 227-236.	1.6	76
117	Chemical modification of heme group improves hemoglobin affinity for hydrophobic substrates in organic media. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 437-441.	1.8	13
118	Purification, Characterization, and Chemical Modification of Manganese Peroxidase from Bjerkandera adusta UAMH 8258. Current Microbiology, 2002, 45, 77-87.	2.2	63
119	Electroreduction of O2 to water at 0.6 V (SHE) at pH 7 on the â€~wired' Pleurotus ostreatus laccase cathode. Biosensors and Bioelectronics, 2002, 17, 1071-1074.	10.1	104
120	Peroxidase-mediated transformation of hydroxy-9,10-anthraquinones. Phytochemistry, 2002, 60, 567-572.	2.9	24
121	Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 214-220.	3.0	42
122	Suicide Inactivation of Peroxidases and the Challenge of Engineering More Robust Enzymes. Chemistry and Biology, 2002, 9, 555-565.	6.0	310
123	Enzyme Conjugation to the Polysaccharide Chitosan:  Smart Biocatalysts and Biocatalytic Hydrogels. Bioconjugate Chemistry, 2001, 12, 301-306.	3.6	79
124	Effect of growth conditions on the production of manganese peroxidase by three strains of Bjerkandera adusta. Canadian Journal of Microbiology, 2001, 47, 277-282.	1.7	24
125	Combinatorial Screening for Enzyme-Mediated Coupling. Tyrosinase-Catalyzed Coupling To Create Proteinâ^ Chitosan Conjugates. Biomacromolecules, 2001, 2, 456-462.	5.4	74
126	Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Letters in Applied Microbiology, 2001, 32, 331-335.	2.2	104

#	Article	IF	CITATIONS
127	Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago. Phytochemistry, 2001, 58, 929-933.	2.9	62
128	Peroxidase catalyzed grafting of gallate esters onto the polysaccharide chitosan. Enzyme and Microbial Technology, 2001, 29, 380-385.	3.2	61
129	Enzymatic coupling of phenol vapors onto chitosan. Biotechnology and Bioengineering, 2001, 76, 325-332.	3.3	29
130	Molecular imprinting for the selective adsorption of organosulphur compounds present in fuels. Analytica Chimica Acta, 2001, 435, 83-90.	5.4	62
131	Spectroscopic characterization of a manganese–lignin peroxidase hybrid isozyme produced by Bjerkandera adusta in the absence of manganese: evidence of a protein centred radical by hydrogen peroxide. Journal of Molecular Catalysis B: Enzymatic, 2001, 16, 159-167.	1.8	18
132	Effect of growth conditions on the production of manganese peroxidase by three strains of <i>Bjerkandera adusta</i> . Canadian Journal of Microbiology, 2001, 47, 277-282.	1.7	4
133	A cytochrome c variant resistant to heme degradation by hydrogen peroxide. Chemistry and Biology, 2000, 7, 237-244.	6.0	59
134	Modified cytochrome c/H2O2 system: spectroscopic EPR investigation of the biocatalytic behaviour. Journal of Molecular Catalysis B: Enzymatic, 2000, 9, 39-48.	1.8	14
135	Title is missing!. Biotechnology Letters, 2000, 22, 469-472.	2.2	45
136	Chemical Modification of Hemoglobin Improves Biocatalytic Oxidation of PAHs. Biochemical and Biophysical Research Communications, 2000, 273, 820-823.	2.1	30
137	Substrate Specificity and Ionization Potential in Chloroperoxidase-Catalyzed Oxidation of Diesel Fuel. Environmental Science & Technology, 2000, 34, 2804-2809.	10.0	59
138	Polycyclic Aromatic Hydrocarbon Metabolism by White Rot Fungi and Oxidation by Coriolopsis gallica UAMH 8260 Laccase. Applied and Environmental Microbiology, 1999, 65, 3805-3809.	3.1	208
139	The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of <i>Pseudomonas aeruginosa</i> W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain. Applied and Environmental Microbiology, 1999, 65, 3730-3734.	3.1	20
140	Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase. Biotechnology Letters, 1999, 21, 875-880.	2.2	102
141	Growth characteristics of Pleurotus ostreatus in bioreactors. Biotechnology Letters, 1999, 13, 29-32.	0.5	17
142	Industrial Dye Decolorization by Laccases from Ligninolytic Fungi. Current Microbiology, 1999, 38, 27-32.	2.2	281
143	Modelling the alcoholysis reaction of β-galactosidase with butanol in reverse micelles. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 1-10.	1.8	4
144	Cytochrome c as a biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 241-249.	1.8	112

#	Article	IF	CITATIONS
145	Enzymatic Synthesis of Fructosyl Glycerol. Journal of Carbohydrate Chemistry, 1999, 18, 275-283.	1.1	14
146	High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium. Canadian Journal of Microbiology, 1999, 45, 627-631.	1.7	56
147	High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium. Canadian Journal of Microbiology, 1999, 45, 627-631.	1.7	8
148	Chloroperoxidase-Mediated Oxidation of Organophosphorus Pesticides. Pesticide Biochemistry and Physiology, 1998, 61, 87-94.	3.6	50
149	Thermodynamic hydrophobicity of aqueous mixtures of water-miscible organic solvents predicts peroxidase activity. Journal of Molecular Catalysis B: Enzymatic, 1998, 4, 155-159.	1.8	22
150	Chemical modification of cytochrome C improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons. Enzyme and Microbial Technology, 1998, 22, 8-12.	3.2	50
151	Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Processing Technology, 1998, 57, 101-111.	7.2	51
152	Hemoproteins as Biocatalysts for the Oxidation of Polycyclic Aromatic Hydrocarbons. , 1998, , 183-207.		7
153	Biocatalytic oxidation of polycyclic aromatic hydrocarbons in media containing organic solvents. Water Science and Technology, 1997, 36, 37.	2.5	22
154	Determination of Genotoxicity Using a Chloroperoxidase-Mediated Model of PAH-DNA Adduct Formation. Bulletin of Environmental Contamination and Toxicology, 1997, 59, 788-795.	2.7	5
155	Biocatalytic oxidation of polycyclic aromatic hydrocarbons in media containing organic solvents. Water Science and Technology, 1997, 36, 37-44.	2.5	9
156	Solvent hydrophobicity predicts biocatalytic behaviour of lignin peroxidase and cytochrome c in aqueous solution of water-miscible organic solvents. Journal of Biotechnology, 1996, 49, 59-67.	3.8	32
157	Biochemical Method for Chlorine Dioxide Determination. Analytical Biochemistry, 1996, 241, 18-22.	2.4	9
158	The effect of chemical, physical and enzymatic treatments on the dewatering of tar sands tailings. Fuel, 1995, 74, 1404-1412.	6.4	3
159	Site-directed mutagenesis improves the biocatalytic activity of iso-1-cytochrome c in polycyclic hydrocarbon oxidation. Enzyme and Microbial Technology, 1995, 17, 1014-1020.	3.2	37
160	Biocatalytic Oxidation of Polycyclic Aromatic Hydrocarbons by Hemoglobin and Hydrogen Peroxide. Biochemical and Biophysical Research Communications, 1995, 215, 968-973.	2.1	36
161	Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Applied Microbiology and Biotechnology, 1995, 42, 675-681.	3.6	21
162	Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Applied Microbiology and Biotechnology, 1995, 42, 675-681.	3.6	3

#	Article	IF	CITATIONS
163	Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents. Applied and Environmental Microbiology, 1994, 60, 459-466.	3.1	147
164	Cytochrome c as a biocatalyst for the oxidation of thiophenes and organosulfides. Enzyme and Microbial Technology, 1993, 15, 494-499.	3.2	42
165	Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes. Enzyme and Microbial Technology, 1993, 15, 429-437.	3.2	69
166	Effect of water-miscible organic solvents on the catalytic activity of cytochrome c. Enzyme and Microbial Technology, 1993, 15, 936-943.	3.2	58
167	Effect of a salt-osmotic upshock on the edaphic microalga Neochloris oleoabundans. Plant, Cell and Environment, 1992, 15, 129-133.	5.7	15
168	Role of enzyme hydrophobicity in biocatalysis in organic solvents. Enzyme and Microbial Technology, 1992, 14, 837-841.	3.2	44
169	Haloadaptation of the green alga Botryococcus braunii (race a). Phytochemistry, 1991, 30, 2919-2925.	2.9	58
170	Variation in polar-group content in lipids of cowpea (Vigna unguiculata) Cell cultures as a mechanism of haloadaptation. Plant Cell, Tissue and Organ Culture, 1991, 26, 83-88.	2.3	2
171	Peroxidase activity in calluses and cell suspension cultures of radishRaphanus sativus var. Cherry Bell. Plant Cell, Tissue and Organ Culture, 1989, 18, 321-327.	2.3	12
172	Environmental impact of used motor oil. Science of the Total Environment, 1989, 79, 1-23.	8.0	147
173	Growth and production of cell constituents in batch cultures of botryococcus sudeticus. Phytochemistry, 1987, 26, 885-889.	2.9	20
174	Biodegradation of used motor oil by bacteria promotes the solubilization of heavy metals. Science of the Total Environment, 1986, 52, 109-121.	8.0	10