Rafael Vazquez-Duhalt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952893/publications.pdf

Version: 2024-02-01

174 papers 7,351 citations

50 h-index 71685 **76** g-index

178 all docs

178 docs citations

178 times ranked

7353 citing authors

#	Article	IF	CITATIONS
1	Suicide Inactivation of Peroxidases and the Challenge of Engineering More Robust Enzymes. Chemistry and Biology, 2002, 9, 555-565.	6.0	310
2	Industrial Dye Decolorization by Laccases from Ligninolytic Fungi. Current Microbiology, 1999, 38, 27-32.	2.2	281
3	Polycyclic Aromatic Hydrocarbon Metabolism by White Rot Fungi and Oxidation by Coriolopsis gallica UAMH 8260 Laccase. Applied and Environmental Microbiology, 1999, 65, 3805-3809.	3.1	208
4	Biodegradation of Organic Pollutants by Halophilic Bacteria and Archaea. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 74-92.	1.0	205
5	Micromotorâ€Based Highâ€Yielding Fast Oxidative Detoxification of Chemical Threats. Angewandte Chemie - International Edition, 2013, 52, 13276-13279.	13.8	184
6	Environmental impact of used motor oil. Science of the Total Environment, 1989, 79, 1-23.	8.0	147
7	Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents. Applied and Environmental Microbiology, 1994, 60, 459-466.	3.1	147
8	Bubble-Propelled Micromotors for Enhanced Transport of Passive Tracers. Langmuir, 2014, 30, 5082-5087.	3.5	136
9	Cytochrome c as a biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 241-249.	1.8	112
10	Effect of temperature and pH on the secondary structure and processes of oligomerization of 19ÂkDa alpha-zein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1110-1118.	2.3	107
11	Effect of Alkaline Deamidation on the Structure, Surface Hydrophobicity, and Emulsifying Properties of the Z19 α-Zein. Journal of Agricultural and Food Chemistry, 2007, 55, 439-445.	5. 2	107
12	Halogenated pesticide transformation by a laccase–mediator system. Chemosphere, 2009, 77, 687-692.	8.2	107
13	Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Letters in Applied Microbiology, 2001, 32, 331-335.	2.2	104
14	Electroreduction of O2 to water at 0.6 V (SHE) at pH 7 on the â€~wired' Pleurotus ostreatus laccase cathode. Biosensors and Bioelectronics, 2002, 17, 1071-1074.	10.1	104
15	Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase. Biotechnology Letters, 1999, 21, 875-880.	2.2	102
16	Nature-Inspired Creation of Proteinâ^'Polysaccharide Conjugate and Its Subsequent Assembly onto a Patterned Surface. Langmuir, 2003, 19, 9382-9386.	3 . 5	102
17	Tryptophan-Based Radical in the Catalytic Mechanism of Versatile Peroxidase fromBjerkandera adustaâ€. Biochemistry, 2005, 44, 4267-4274.	2.5	94
18	Identification of volatile compounds produced by the bacterium <i><i>Burkholderia tropica </i></i> that inhibit the growth of fungal pathogens. Bioengineered, 2013, 4, 236-243.	3.2	93

#	Article	IF	Citations
19	Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation, 2003, 14, 397-406.	3.0	92
20	Nonylphenol algal bioaccumulation and its effect through the trophic chain. Chemosphere, 2007, 68, 662-670.	8.2	92
21	Characterization of a 19 kDa α-Zein of High Purity. Journal of Agricultural and Food Chemistry, 2005, 53, 725-729.	5.2	83
22	Enzyme Conjugation to the Polysaccharide Chitosan:  Smart Biocatalysts and Biocatalytic Hydrogels. Bioconjugate Chemistry, 2001, 12, 301-306.	3.6	79
23	Effect of pollutants on the ergosterol content as indicator of fungal biomass. Journal of Microbiological Methods, 2002, 50, 227-236.	1.6	76
24	Combinatorial Screening for Enzyme-Mediated Coupling. Tyrosinase-Catalyzed Coupling To Create Proteinâ^'Chitosan Conjugates. Biomacromolecules, 2001, 2, 456-462.	5.4	74
25	Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzyme and Microbial Technology, 2005, 36, 223-231.	3.2	74
26	Efficient Biocatalytic Degradation of Pollutants by Enzymeâ€Releasing Selfâ€Propelled Motors. Chemistry - A European Journal, 2014, 20, 2866-2871.	3.3	71
27	Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes. Enzyme and Microbial Technology, 1993, 15, 429-437.	3.2	69
28	Chemotherapy pro-drug activation by biocatalytic virus-like nanoparticles containing cytochrome P450. Enzyme and Microbial Technology, 2014, 60, 24-31.	3.2	69
29	High Temperature Biocatalysis by Chemically Modified Cytochrome c. Bioconjugate Chemistry, 2002, 13, 1336-1344.	3.6	67
30	Evolutionary and structural diversity of fungal laccases. Antonie Van Leeuwenhoek, 2003, 84, 289-299.	1.7	67
31	Design of a VLP-nanovehicle for CYP450 enzymatic activity delivery. Journal of Nanobiotechnology, 2015, 13, 66.	9.1	67
32	Purification, Characterization, and Chemical Modification of Manganese Peroxidase from Bjerkandera adusta UAMH 8258. Current Microbiology, 2002, 45, 77-87.	2.2	63
33	Manganese–lignin peroxidase hybrid fromBjerkandera adustaoxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Canadian Journal of Microbiology, 2003, 49, 675-682.	1.7	63
34	Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. Journal of Biotechnology, 2005, 117, 73-82.	3.8	63
35	Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago. Phytochemistry, 2001, 58, 929-933.	2.9	62
36	Molecular imprinting for the selective adsorption of organosulphur compounds present in fuels. Analytica Chimica Acta, 2001, 435, 83-90.	5.4	62

#	Article	IF	CITATIONS
37	Peroxidase catalyzed grafting of gallate esters onto the polysaccharide chitosan. Enzyme and Microbial Technology, 2001, 29, 380-385.	3.2	61
38	Polyethylene glycol improves phenol removal by immobilized turnip peroxidase. Bioresource Technology, 2008, 99, 8605-8611.	9.6	61
39	A cytochrome c variant resistant to heme degradation by hydrogen peroxide. Chemistry and Biology, 2000, 7, 237-244.	6.0	59
40	Substrate Specificity and Ionization Potential in Chloroperoxidase-Catalyzed Oxidation of Diesel Fuel. Environmental Science &	10.0	59
41	Haloadaptation of the green alga Botryococcus braunii (race a). Phytochemistry, 1991, 30, 2919-2925.	2.9	58
42	Effect of water-miscible organic solvents on the catalytic activity of cytochrome c. Enzyme and Microbial Technology, 1993, 15, 936-943.	3.2	58
43	High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium. Canadian Journal of Microbiology, 1999, 45, 627-631.	1.7	56
44	Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. FEMS Microbiology Letters, 2005, 244, 235-241.	1.8	56
45	Biocatalytic transformation of petroporphyrins by chemical modified cytochrome C. Biotechnology and Bioengineering, 2004, 85, 790-798.	3.3	54
46	Laccase-Mediated Transformations of Endocrine Disrupting Chemicals Abolish Binding Affinities to Estrogen Receptors and Their Estrogenic Activity in Zebrafish. Applied Biochemistry and Biotechnology, 2012, 168, 864-876.	2.9	54
47	Carrier-Free Immobilization of Lipase from <i>Candida rugosa</i> with Polyethyleneimines by Carboxyl-Activated Cross-Linking. Biomacromolecules, 2014, 15, 1896-1903.	5.4	54
48	Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. Enzyme and Microbial Technology, 2006, 38, 772-779.	3.2	52
49	Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere, 2008, 72, 485-490.	8.2	52
50	A novel and simple method for polyethylene terephthalate (PET) nanoparticle production. Environmental Science: Nano, 2019, 6, 2031-2036.	4.3	52
51	Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Processing Technology, 1998, 57, 101-111.	7.2	51
52	Molecular design of laccase cathode for direct electron transfer in a biofuel cell. Biosensors and Bioelectronics, 2011, 26, 2626-2631.	10.1	51
53	Chloroperoxidase-Mediated Oxidation of Organophosphorus Pesticides. Pesticide Biochemistry and Physiology, 1998, 61, 87-94.	3.6	50
54	Chemical modification of cytochrome C improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons. Enzyme and Microbial Technology, 1998, 22, 8-12.	3.2	50

#	Article	IF	Citations
55	First evidence of mineralization of petroleum asphaltenes by a strain of $\langle i \rangle$ Neosartorya fischeri $\langle i \rangle$. Microbial Biotechnology, 2011, 4, 663-672.	4.2	48
56	Cross-linked crystals of chloroperoxidase. Biochemical and Biophysical Research Communications, 2002, 295, 828-831.	2.1	46
57	Role of oxidizing mediators and tryptophan 172 in the decoloration of industrial dyes by the versatile peroxidase from Bjerkandera adusta. Journal of Molecular Catalysis B: Enzymatic, 2007, 46, 1-7.	1.8	46
58	Title is missing!. Biotechnology Letters, 2000, 22, 469-472.	2.2	45
59	Role of enzyme hydrophobicity in biocatalysis in organic solvents. Enzyme and Microbial Technology, 1992, 14, 837-841.	3 . 2	44
60	Will Biochemical Catalysis Impact the Petroleum Refining Industry?. Energy & Energy	5.1	44
61	Laccase encapsulation in chitosan nanoparticles enhances the protein stability against microbial degradation. Environmental Science and Pollution Research, 2016, 23, 18850-18857.	5 . 3	44
62	Fungal Enzymes for Environmental Purposes, a Molecular Biology Challenge. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 172-180.	1.0	43
63	Cytochrome c as a biocatalyst for the oxidation of thiophenes and organosulfides. Enzyme and Microbial Technology, 1993, 15, 494-499.	3. 2	42
64	Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 214-220.	3.0	42
65	Heme destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago. Journal of Biological Inorganic Chemistry, 2011, 16, 63-68.	2.6	41
66	Peroxidase activity stabilization of cytochrome P450BM3 by rational analysis of intramolecular electron transfer. Journal of Inorganic Biochemistry, 2013, 122, 18-26.	3 . 5	41
67	Enzymatic detoxification of organophosphorus pesticides and related toxicants. Journal of Pesticide Sciences, 2018, 43, 1-9.	1.4	41
68	A catalytic approach to estimate the redox potential of heme-peroxidases. Biochemical and Biophysical Research Communications, 2007, 357, 804-808.	2.1	40
69	Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Advances, 2014, 4, 27565-27570.	3.6	40
70	Multifunctionalized biocatalytic P22 nanoreactor for combinatory treatment of ER+ breast cancer. Journal of Nanobiotechnology, 2018, 16, 17.	9.1	40
71	Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago. Green Chemistry, 2008, 10, 647.	9.0	38
72	Site-directed mutagenesis improves the biocatalytic activity of iso-1-cytochrome c in polycyclic hydrocarbon oxidation. Enzyme and Microbial Technology, 1995, 17, 1014-1020.	3.2	37

#	Article	IF	CITATIONS
73	Oxidative stabilization of isoâ€1â€cytochrome <i>c</i> by redoxâ€inspired protein engineering. FASEB Journal, 2006, 20, 1233-1235.	0.5	37
74	Biocatalytic Oxidation of Polycyclic Aromatic Hydrocarbons by Hemoglobin and Hydrogen Peroxide. Biochemical and Biophysical Research Communications, 1995, 215, 968-973.	2.1	36
7 5	Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel, 2012, 92, 245-249.	6.4	34
76	Biomaterial-based nanoreactors, an alternative for enzyme delivery. Nanotechnology Reviews, 2017, 6, 405-419.	5.8	34
77	Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. Beilstein Journal of Nanotechnology, 2020, 11, 372-382.	2.8	34
78	Solvent hydrophobicity predicts biocatalytic behaviour of lignin peroxidase and cytochrome c in aqueous solution of water-miscible organic solvents. Journal of Biotechnology, 1996, 49, 59-67.	3.8	32
79	Role of Phenanthrene in Rhamnolipid Production byP. putidain Different Media. Environmental Technology (United Kingdom), 2006, 27, 137-142.	2.2	32
80	The prospects for peroxidase-based biorefining of petroleum fuels. Biocatalysis and Biotransformation, 2007, 25, 114-129.	2.0	32
81	Effect of broccoli (Brassica oleracea) and its phytochemical sulforaphane in balanced diets on the detoxification enzymes levels of tilapia (Oreochromis niloticus) exposed to a carcinogenic and mutagenic pollutant. Chemosphere, 2009, 74, 1145-1151.	8.2	32
82	Prediction model based on decision tree analysis for laccase mediators. Enzyme and Microbial Technology, 2013, 52, 68-76.	3.2	32
83	Biocatalytic virus capsid as nanovehicle for enzymatic activation of Tamoxifen in tumor cells. Biotechnology Journal, 2017, 12, 1600706.	3 . 5	32
84	EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. Environmental Science and Pollution Research, 2015, 22, 8683-8692.	5.3	31
85	Chemical Modification of Hemoglobin Improves Biocatalytic Oxidation of PAHs. Biochemical and Biophysical Research Communications, 2000, 273, 820-823.	2.1	30
86	Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes. Biosensors and Bioelectronics, 2014, 61, 569-574.	10.1	30
87	Enzymatic coupling of phenol vapors onto chitosan. Biotechnology and Bioengineering, 2001, 76, 325-332.	3.3	29
88	Microbial and Enzymatic Biotransformations of Asphaltenes. Petroleum Science and Technology, 2015, 33, 1017-1029.	1.5	29
89	Chitosan-based biocatalytic nanoparticles for pollutant removal from wastewater. Enzyme and Microbial Technology, 2017, 100, 71-78.	3.2	29
90	3D printer waste, a new source of nanoplastic pollutants. Environmental Pollution, 2020, 267, 115609.	7.5	29

#	Article	IF	Citations
91	Virusâ€Based Nanomotors for Cargo Delivery. ChemNanoMat, 2019, 5, 194-200.	2.8	28
92	Mechanism of versatile peroxidase inactivation by Ca2+ depletion. Biophysical Chemistry, 2006, 121, 163-170.	2.8	27
93	Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 81-87.	1.8	27
94	Chemical Modification of Turnip Peroxidase with Methoxypolyethylene Glycol Enhances Activity and Stability for Phenol Removal Using the Immobilized Enzyme. Journal of Agricultural and Food Chemistry, 2008, 56, 8058-8065.	5.2	26
95	Antioxidant Capacity of Poly(Ethylene Glycol) (PEG) as Protection Mechanism Against Hydrogen Peroxide Inactivation of Peroxidases. Applied Biochemistry and Biotechnology, 2015, 177, 1364-1373.	2.9	26
96	Effect of growth conditions on the production of manganese peroxidase by three strains of Bjerkandera adusta. Canadian Journal of Microbiology, 2001, 47, 277-282.	1.7	24
97	Peroxidase-mediated transformation of hydroxy-9,10-anthraquinones. Phytochemistry, 2002, 60, 567-572.	2.9	24
98	Self-propelled chemically-powered plant-tissue biomotors. Chemical Communications, 2013, 49, 7307.	4.1	23
99	Biocatalytic oxidation of polycyclic aromatic hydrocarbons in media containing organic solvents. Water Science and Technology, 1997, 36, 37.	2.5	22
100	Thermodynamic hydrophobicity of aqueous mixtures of water-miscible organic solvents predicts peroxidase activity. Journal of Molecular Catalysis B: Enzymatic, 1998, 4, 155-159.	1.8	22
101	Electron-balance during the oxidative self-inactivation of cytochrome c. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 41-44.	1.8	22
102	Peroxidase-mediated synthesis of water-soluble fully sulfonated polyaniline. Synthetic Metals, 2012, 162, 794-799.	3.9	22
103	Determination of conjugated protein on nanoparticles by an adaptation of the Coomassie blue dye method. MethodsX, 2019, 6, 2134-2140.	1.6	22
104	Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Applied Microbiology and Biotechnology, 1995, 42, 675-681.	3.6	21
105	Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability. Nanoscale Research Letters, 2014, 9, 409.	5.7	21
106	Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri. Environmental Science and Pollution Research, 2016, 23, 10773-10784.	5.3	21
107	Enhanced laccase activity of biocatalytic hybrid copper hydroxide nanocages. Enzyme and Microbial Technology, 2019, 128, 59-66.	3.2	21
108	Growth and production of cell constituents in batch cultures of botryococcus sudeticus. Phytochemistry, 1987, 26, 885-889.	2.9	20

#	Article	IF	CITATIONS
109	The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of <i>Pseudomonas aeruginosa</i> W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain. Applied and Environmental Microbiology, 1999, 65, 3730-3734.	3.1	20
110	Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)- \hat{l}^3 -Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 90-95.	1.8	20
111	Substitution of the Catalytic Metal and Protein PEGylation Enhances Activity and Stability of Bacterial Phosphotriesterase. Applied Biochemistry and Biotechnology, 2012, 166, 1236-1247.	2.9	19
112	Bi-enzymatic virus-like bionanoreactors for the transformation of endocrine disruptor compounds. International Journal of Biological Macromolecules, 2020, 146, 415-421.	7.5	19
113	Spectroscopic characterization of a manganese–lignin peroxidase hybrid isozyme produced by Bjerkandera adusta in the absence of manganese: evidence of a protein centred radical by hydrogen peroxide. Journal of Molecular Catalysis B: Enzymatic, 2001, 16, 159-167.	1.8	18
114	Nitrogen Limitation in Neochloris oleoabundans: A Reassessment of Its Effect on Cell Growth and Biochemical Composition. Applied Biochemistry and Biotechnology, 2013, 171, 1775-1791.	2.9	18
115	Polyethylene terephthalate nanoparticles effect on RAW 264.7 macrophage cells. Microplastics and Nanoplastics, 2022, 2, .	8.8	18
116	Growth characteristics of Pleurotus ostreatus in bioreactors. Biotechnology Letters, 1999, 13, 29-32.	0.5	17
117	A Novel Heme Peroxidase from <i>Raphanus sativus</i> Intrinsically Resistant to Hydrogen Peroxide. Engineering in Life Sciences, 2008, 8, 286-296.	3.6	17
118	QM/MM Molecular Modeling and Marcus Theory in the Molecular Design of Electrodes for Enzymatic Fuel Cells. ChemElectroChem, 2014, 1, 496-513.	3.4	17
119	Catalytic Kinetics Considerations and Molecular Tools for the Design of Multienzymatic Cascade Nanoreactors. ChemCatChem, 2021, 13, 3732-3748.	3.7	17
120	Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 1-8.	1.8	16
121	Effect of a salt-osmotic upshock on the edaphic microalga Neochloris oleoabundans. Plant, Cell and Environment, 1992, 15, 129-133.	5.7	15
122	Enzymatic Synthesis of Fructosyl Glycerol. Journal of Carbohydrate Chemistry, 1999, 18, 275-283.	1.1	14
123	Modified cytochrome c/H2O2 system: spectroscopic EPR investigation of the biocatalytic behaviour. Journal of Molecular Catalysis B: Enzymatic, 2000, 9, 39-48.	1.8	14
124	Comparative intestinal absorption of amino acids in rainbow trout (Oncorhynchus mykiss), totoaba (Totoaba macdonaldi) and Pacific bluefin tuna (Thunnus orientalis). Aquaculture Nutrition, 2008, 14, 481-489.	2.7	14
125	The effect of broccoli in diet on the cytochrome P450 activities of tilapia fish (Oreochromis) Tj ETQq $1\ 1\ 0.784314$	4 rgBT /O	verlock 10 Tf S
126	A spectroscopic characterization of a phenolic natural mediator in the laccase biocatalytic reaction. Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 203-208.	1.8	14

#	Article	IF	CITATIONS
127	Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone. Genomics Data, 2015, 5, 235-237.	1.3	14
128	Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite. PLoS ONE, 2016, 11, e0166205.	2.5	14
129	Enhancement of Peroxidase Stability Against Oxidative Self-Inactivation by Co-immobilization with a Redox-Active Protein in Mesoporous Silicon and Silica Microparticles. Nanoscale Research Letters, 2016, 11, 417.	5.7	14
130	Chemical modification of heme group improves hemoglobin affinity for hydrophobic substrates in organic media. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 437-441.	1.8	13
131	Pesticide transformation by a variant of CYPBM3 with improved peroxygenase activity. Pesticide Biochemistry and Physiology, 2012, 102, 169-174.	3.6	13
132	New Bismuth Germanate Oxide Nanoparticle Material for Biolabel Applications in Medicine. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	13
133	Peroxidase activity in calluses and cell suspension cultures of radishRaphanus sativus var. Cherry Bell. Plant Cell, Tissue and Organ Culture, 1989, 18, 321-327.	2.3	12
134	Enzymatic Synthesis of Semiconductor Polymers by Chloroperoxidase of Caldariomyces fumago. Applied Biochemistry and Biotechnology, 2010, 162, 927-934.	2.9	11
135	Spectroscopic characterization of 2,6-dimethoxyphenol radical intermediates in the Coriolopsis gallica laccase-mediator system. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 100-105.	1.8	11
136	Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment. Macromolecular Bioscience, 2017, 17, .	4.1	11
137	Surface modification of protein enhances encapsulation in chitosan nanoparticles. Applied Nanoscience (Switzerland), 2018, 8, 1197-1203.	3.1	11
138	Enzymatic Activation of the Emerging Drug Resveratrol. Applied Biochemistry and Biotechnology, 2018, 185, 248-256.	2.9	11
139	Biodegradation of used motor oil by bacteria promotes the solubilization of heavy metals. Science of the Total Environment, 1986, 52, 109-121.	8.0	10
140	Membrane-less enzymatic fuel cell operated under acidic conditions. Journal of Electroanalytical Chemistry, 2018, 830-831, 56-62.	3.8	10
141	Virusâ€Based Nanoreactors with GALT Activity for Classic Galactosemia Therapy. ChemMedChem, 2021, 16, 1438-1445.	3.2	10
142	Extra-Heavy Crude Oil Degradation by Alternaria sp. Isolated from Deep-Sea Sediments of the Gulf of Mexico. Applied Sciences (Switzerland), 2021, 11, 6090.	2.5	10
143	Biochemical Method for Chlorine Dioxide Determination. Analytical Biochemistry, 1996, 241, 18-22.	2.4	9
144	Chapter 3 Enzymatic catalysis on petroleum products. Studies in Surface Science and Catalysis, 2004, 151, 67-111.	1.5	9

#	Article	IF	CITATIONS
145	Camouflaged, activatable and therapeutic tandem bionanoreactors for breast cancer theranosis. Journal of Colloid and Interface Science, 2020, 580, 365-376.	9.4	9
146	Biocatalytic oxidation of polycyclic aromatic hydrocarbons in media containing organic solvents. Water Science and Technology, 1997, 36, 37-44.	2.5	9
147	Biocatalytic Performance of Chloroperoxidase from Caldariomyces fumago Immobilized onto TiO2 Based Supports. Topics in Catalysis, 2016, 59, 387-393.	2.8	8
148	High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium. Canadian Journal of Microbiology, 1999, 45, 627-631.	1.7	8
149	Photoluminescence of Europium-Activated Hydroxyapatite Nanoparticles in Body Fluids. Science of Advanced Materials, 2012, 4, 558-562.	0.7	8
150	Syringaldehyde a true laccase mediator: Comments on the Letter to the Editor from Jeon, J-R., Kim, E-J. and Chang, Y-S Chemosphere, 2011, 85, 1761-1762.	8.2	7
151	Substrate ionization energy influences the epoxidation of m-substituted styrenes catalyzed by chloroperoxidase from Caldariomyces fumago. Catalysis Communications, 2016, 77, 52-54.	3.3	7
152	Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field., 2010, , 179-206.		7
153	Hemoproteins as Biocatalysts for the Oxidation of Polycyclic Aromatic Hydrocarbons., 1998,, 183-207.		7
154	Chitosan Nanoparticles Containing Lipoic Acid with Antioxidant Properties as a Potential Nutritional Supplement. Animals, 2022, 12, 417.	2.3	6
155	Determination of Genotoxicity Using a Chloroperoxidase-Mediated Model of PAH-DNA Adduct Formation. Bulletin of Environmental Contamination and Toxicology, 1997, 59, 788-795.	2.7	5
156	Unusual activation during peroxidase reaction of a cytochrome c variant. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 187-192.	1.8	5
157	PEGylation of cytochrome P450 enhances its biocatalytic performance for pesticide transformation. International Journal of Biological Macromolecules, 2017, 105, 163-170.	7.5	5
158	Role and dynamics of an agmatinase-like protein (AGM-1) in Neurospora crassa. Fungal Genetics and Biology, 2019, 132, 103264.	2.1	5
159	Modelling the alcoholysis reaction of \hat{l}^2 -galactosidase with butanol in reverse micelles. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 1-10.	1.8	4
160	Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions. , 2010, , 2767-2785.		4
161	Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions. , 2016, , 1-36.		4
162	Effect of growth conditions on the production of manganese peroxidase by three strains of <i>Bjerkandera adusta</i> . Canadian Journal of Microbiology, 2001, 47, 277-282.	1.7	4

#	Article	IF	CITATIONS
163	The effect of chemical, physical and enzymatic treatments on the dewatering of tar sands tailings. Fuel, 1995, 74, 1404-1412.	6.4	3
164	Introduction. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 71-73.	1.0	3
165	Tryptophan-surface modification of versatile peroxidase from Bjerkandera adusta enhances its catalytic performance. Journal of Molecular Catalysis B: Enzymatic, 2016, 124, 45-51.	1.8	3
166	Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Applied Microbiology and Biotechnology, 1995, 42, 675-681.	3.6	3
167	Variation in polar-group content in lipids of cowpea (Vigna unguiculata) Cell cultures as a mechanism of haloadaptation. Plant Cell, Tissue and Organ Culture, 1991, 26, 83-88.	2.3	2
168	Addition of new catalytic sites on the surface of versatile peroxidase for enhancement of LRET catalysis. Enzyme and Microbial Technology, 2019, 131, 109429.	3.2	2
169	Biocatalytic Nanoreactors for Medical Purposes. , 2019, , 637-671.		2
170	Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions. , 2017, , 705-740.		1
171	Enzymatic characterization of agmatinase (AGM-1) from the filamentous fungus Neurospora crassa. Fungal Genetics and Biology, 2021, 157, 103634.	2.1	1
172	Respuestas celulares de macrófagos a nanopartÃculas de óxidos metálicos. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2020, 14, 1e-16e.	0.1	0
173	Evaluando la toxicidad de nanomateriales en modelos celulares tridimensionales. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2020, 13, 157-171.	0.1	O
174	Desbalance del sistema antioxidante causado por la exposición a nanopartÃculas de óxido de zinc y óxido de cobre. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2021, 15, 1e-13e.	0.1	0